Modular Multiplication Algorithm Design for Application of Cryptosystem
based on Public Key Structure
Jungl-Tae Kim' - Chang-Woo Hur - Kwang-Ryul Ryu
"Mokwon University

E-mail : jtkim3050@mokwon.ac.kr
2 o

BERS 7]go] HWAE s Holx JAEAN, CATV, A, FAEA WEHEDI ; Electronic
Data Exchange)& X §¢+ Z=x}4A 2l (electronic commerce), smart IC card, EFT (Electronic Funds
Transter) 5 7o 2E FRFA 4 #d ForE FEstn Aok 53] ol FuALHe AL
459 ¥%& ¥ hacking ZAE At € 27} QHEolAE 2 9L nA Helh gapr B =2
AME HZo FAFA B30 AYE B9 FH YudEe) §3A 149 polynomials® normal
Z1Ae} dig Q4 ARE B4t

ABSTRACT

The computational cost of encryption is a barrier to wider application of a variety of data
security protocols. Virtually all research on Elliptic Curve Cryptography(ECC) provides evidence
to suggest that ECC can provide a family of encryption algorithms that implementation than do
current widely used methods. This efficiency is obtained since ECC allows much shorter key
lengths for equivalent levels of security. This paper suggests how improvements in execution of
ECC algorithms can be obtained by changing the representation of the elements of the finite field
of the ECC algorithm. Specifically, this research compares the time complexity of ECC
computation over a variety of finite fields with elements expressed in the polynomial basis(PB)
and normal basis(NB)

Key Words
Elliptic Curve, Cryptography, Security

I. Introduction

intuitive ways of implementation. However,
both methods admit sub-exponential algorithms
of cryptography. In this regard, elliptic curve
crytographic method is available. The best

There are three families of public key
algorithms that have considerable significance in
current data security practice. They are integer
factorization, discrete logarithm and elliptic

curve based schemes. Integer factorization based
schemes such as RSA and Discrete Logarithm
based schemes such as Diffie Hellman provides

current brute force algorithms for cryptoanalysis
of ECC require O(n/2) steps where n is the
order of the additive group. For example, using

- 469 -

BIHFPETANEE 2003 EAFHA WA ATH AE

the best current brute force algorithms ECC
with a key size of 173 bits provides the same
level of cryptographic security as RSA with a
key size of 1024 bits. This results in smaller
system parameters, bandwidth savings, faster
implementations and lower power consumption.
In addition, elliptic curves over finite fields
offer an inexhausible supply of finite abelian
groups, thus allowing more flexible field
selections than conventional discrete logarithm
schemes. Because of these advantages, ECC has
extracted extensive attention in recent yearsm].

ll. Elliptic Curves

Elliptic curves were first suggest in 1985 by
Victor Miller and Neal Kolitz for implementing
public key cryptosystems. The addition
operation of this group is easy to implement.
Moreover, the discrete logarithm problem in
this group is believed to be very difficult, even
much harder than the discrete logarithm

problem in finite fields of the same size as K,

lil. Elliptic Curve Cryptography

An ECC over GF(2") is defined to be the set
of points (x,y) satisfying an equation of the
form y* + axy + by = X + ol + dx + e,
where a, b, ¢, d and e are real numbers satisfy
some conditions which depends on the field it
belongs to, such as real number or finite
number field. There is a point O called the
point at infinity or the zero point. The basic
operation of elliptic curve is addition. To
double for a point P, it is equivalent to do
P+P. Similary, we can calculate 3P=2P+P and
so on. One important property is that it is very
difficult to find an integer n such that nP=Q.

In order to use elliptic curve to do
cryptographic operation, some basic setup is
needed.

- Find a curve y’=x*ax+b over finite field.
- Find a point G=(xo,yo) such that Order (G)
= p which is a larger prime number.
- The curve and point G is known to
everyone and can be shared by multiple user.
- Private key is an integer.
- Public key is a point on the curve.

3.1 Arithmetic Operations Over GF(2")

This section describes the performance of
field arithmetic operations over GF(2") with
field size ranging from 100 to 1279 bits for PB
and from 100 to 1019 Dbits for NB
representations. The wvariation in field size
results from using existing well defined finite
fields. Theoretically, once the field size n is
selected, the content of the input message
should not affect the performance. A Message
is a byte-string of a given size. Since we can
generate a random input message easily, a
different random input message was used for
each run. Reported execution times are the
average of 20 independent runs with 20
different input message of the same size. For
the performance comparison between PB and
NB representations. 5-10% difference in timings
for the same type of operation is recognized as
a significant difference in performance®,

3.2 Addition and Subtraction

Addition and subtraction can be implemented
efficiently by exclusive-OR of two field
elements. The performance of these operations
is illustrated in Figure 1. It can be seen that
the time complexities of Addition/Subtraction
are proportional to the field size and vary from
0.13 to 1.15 us over the field size range from

100 to 1279 bits for both NB and PB
multiplication.
—o— NB
-+ PB
124
g 10
g 08
% 08
m 04
0.2+ /
[S " " PR PR Py S

Field size(bits)

Fig. 1 Execution time for Addition and

Subtraction

Polynomial basis: Multiplication in PB
contains two step: partial multiplication and
modular reduction. For partial multiplication,
we employ the shift and add strategy: This
algorithm runs in O(n*n/ws) time where n is

- 470 -

FF 71ke] @5 Alxde HEgd wE dN7) dneEe] A8 44

the field size in bits, ws is machine word size.
Figure 2 shows that the performance of
multiplication in PB varies from 87 to 8960 us
over field sizes ranging from 100 to 1279 bits.

~a—NB
* PB
10000 9

Execution time{us)
-3
g8

—r= T T T v
800 800 1000 1200 1400
Field size(bits}

e
=
200 400

Fig. 2 Execution time for multiplication

Normal basis: The implementation computes
multiplication through shift, XOR, and AND.
First, shift one multiplier consecutively and
store the results for later lookup. Since the
lamda matrix can be precomputed, simply
rotate the other multiplier, lookup the lamda
matrix table twice, and performance XOR and
AND. This algorithm takes O(n*n/ws) time
where n is field size in bits and ws is the
machine word size. The execution time for this
implementation is shown in Figure 3.

—s— S50R
e MUL
«oooow

Execution time{us)

— — A T T T T
200 400 800 800 1000 1200 1400
Field size(bits)

Fig. 3 Comparison of Execution time for
Squaring with Multiplication in PB.

Figure 3. Execution times vary from 108 to
6066 us over field sizes ranging from 100 to
1019 bits. Multiplication in PB is about 17%
faster than of NB. Both algorithms have similar
time complexities. The PB implementation uses
a trinomial to enhance the performance. The
NB implementation wuses table-lookup to
simplify the computation.

—=— SQR
* MUL
10000
8000
@
=]
T 8000 e
£ -
s .
£ 40004
g
&
2000 < ot
K.
PO
0 200 400 €00 800 1000 200 1400

Field size(bits)

Fig. 4 Comparison of execution time for
squaring with multiplication in NB

3.3 Squaring
Squaring is just a special case of
multiplication. Both PB and NB

implementations can simplified for the special
case. This algorithm also runs in O(n). The NB
implementation provides 40% performance
improvement on squaring over general
multiplication. Figure 4 shows that the time for
squaring is negligible when compared to the
time for general multiplication. This 100%
performance improvement is equivalent to 83%
improvement in squaring over multiplication in
NB. This is more than twice the performance
improvement that PB achieves.

IV. Elliptic Group Operations

Elliptic group operations include point
negation, point addition, point subtraction,
point doubling and scalar multiplication. Even
though high-level implementations of these
operations are the same for PB and NB, the
performance of them may be differ since
subroutines called in major functions may
performance differently between PB and NB.
Both the fast and slow algorithms of the
underlying field operations were used as
subroutines for these Group operations,
Polynomial Basis.

Figure 5 shows the execution time for point
addition and point subtraction are very close.
This holds since point subtraction consists of
point addition and point negation and the time
for negation is negligible. Point doubling is
18.7% slower than point addition. This is
probably because point doubling contains one

- an -

FHFRREAS 2003 FAZTGEHIAA ATE Al

extra field squaring operation when compared
to point addition. Point addition consists of 1
squaring, 2 multiplications and 1 conversion,
which are equivalent to 17% point addition.
The Expected time for point doubling is
basically consistent with this analysis. The 1.7%
variation is probably attributed to the constant
factors in implementation and random errors.
Scalar multiplications are the most time
consuming group operation. The times for this
operation vary from 0.04 to 50s over field sizes
from100 to 1279 bits. The times for this
operation vary from 0.04 to 50s over field sizes
from 100 to 1279 bits. This is more than two
orders of magnitude slower than point addition.

—s—PA

40+ 4. PD

204

Execution time{us)

e
T
200

400 8&0 8{!}0 10'00 12’00 1400
Field size(bits)

[}

Figure 5 Execution time for Elliptic Group
Operations in PB

The algorithms takes (f;-1) PD and (fs/2-1)PA
where f, is the field size in bits. Since
PD=118.7% PA based on these measurement.

The execution time for point negation is very
similar to point negations in PB and negligible
compared to timings of other group operations

This is why point addition and point
subtraction have nearly identical executions
times. Normal Basis point doubling appears to
take about the same time as point addition.
Theoretically, point doubling takes an extra
squaring relative to point addition. However, in
NB, the time for squaring is negligible. This
results in the roughly equal timings between
point doubling and point addition.

V. Conclusions

Finite field arithmetic operations include

addition, subtraction, multiplication, squaring
and inversion. These results show that both
addition and subtraction can be implemented
very efficiently and the differences between PB
and NB are small. Multiplication in PB using
PB and NB are small. Multiplication in PB
using trinomial as the irreducible polynomial is
17% faster than multiplication in NB. Squaring,
a special case of multiplication can be
implemented 40% faster than multiplication in
NB. Elliptic group operations include point

negation, point addition, point subtraction,
point doubling and scalar muitiplication. These
results show that point negation can be

implemented very efficiently in both PB and
NB and the time is small compared to other
group operations. Point addition and
subtraction runs in similar time in both PB and
NB.

References

[1] GBAgnew, et all, “An implementation of Elliptic
Curve Cryptosystems over GF(2n), IEEE J. on
Selected Areas in Cormmu v.11, no5, pp.804-813,
1993

[2] THEGamal, "A Public key cryptosystem and a
signature scheme based on discrete logarithms”,

[EEE Tran on Information Theory, v.3lL
pp473-481, 1985

[38] NZKoblitzz "Elliptic curve cryptosystems”,
Mathematics of Computation, v.48 10177,
pp.203-209, 1987

- 472 -

