한국정보과학회:학술대회논문집 (Proceedings of the Korean Information Science Society Conference)
- 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
- /
- Pages.455-457
- /
- 2003
- /
- 1598-5164(pISSN)
다수의 목표 유전자에서 진화연산을 이용한 Oligonucleotide Probe 선택
Oligonucleotide Probe Selection using Evolutionary Computation in Large Target Genes
- Shin, Ki-Roo (Biointelligence Laboratory, School of Computer Science and Engineering, Seoul National University) ;
- Kim, Sun (Biointelligence Laboratory, School of Computer Science and Engineering, Seoul National University) ;
- Zhang, Byung-Tak (Biointelligence Laboratory, School of Computer Science and Engineering, Seoul National University)
- 발행 : 2003.04.01
초록
DNA microarray는 분자생물학에서 널리 사용되고 있는 실험 도구로써 크게 cDNA와 oligonucleotide microarray로 나뉘어진다. DNA microarray는 일련의 DNA 서열로 이루어진 probe들의 집합으로 구성되며 알려지지 않은 서열과의 hybridization 과정을 통해 특정 서열을 인식할 수 있게 된다. O1igonucieotide microarray는 cDNA 방법과는 다르게 probe를 구성하는 서열을 제작자가 임의로 구성할 수 있기 때문에 목표 서열이 가지는 고유한 부분만을 probe 서열로 사용함으로써 비용절감과 실험의 정확도를 높일 수 있다는 장점이 있다. 그러나 현재 목표 유전자 서열에 대해 probe 집합을 생성하는 결정적인 방법은 존재하지 않으며, 따라서 넓은 해 공간에서 효과적으로 최적 해를 찾아 주는 진화 연산이 probe 선택을 위한 좋은 대안으로 사용될 수 있다[1.2]. 그러나 진화연산을 이용한 probe 선택방법에 있어서 인식하고자 하는 목표 서열의 개수가 많아질 경우, 해 공간의 크기가 커짐으로 인해 문제점이 발생할 수 있다. 따라서 본 논문에서는 다수의 목표 유전자 서열을 대상으로 한 probe 선택 방법에 일어서 보다 효율적인 진화연산 접근 방법을 소개한다. 제시된 방법은 인식하고자 하는 목표 서얼의 일부를 선택해 이를 probe 집합의 후보로 사용하며. 유전 연산자를 이용한 진화과정을 통해 최적에 가까운 probe 집합을 찾는다. 본 논문은 GenBank로부터 유전자 서열을 대상으로 제안된 방법을 실험하였으며, 축소된 목표 서열만을 이용해 probe 집합을 선택하더라도 적합한 probe 집합을 찾을 수 있었다.
키워드