ARH FFo] RFHE £ZEN g AT AFY ¢ ¥HF

OIEOC OIE & S &
F2IH7)¢Q AARN}

{salee joon,bae}@se.kaist.ac.kr

Compatibility—Guaranteeing Software Component Evolution
based on Composition Rules

Sunae Lee®, Joon-Sang Lee, and Doo~Hwan Bae
Dept. of Electrical Engineering and Computer Science, KAIST

Abstract

Since building large-scale software is usually big burden to most developers, it has been an important issue for

many researchers.

In this paper, we suggest a mechanism that can be used to support such large-scale

development. Through composition rules via subtyping within Statecharts, incremental construction of software
can be achieved. Among the composition rules (i.e. delegation rule and mixin rule), we mainly focus on the
delegation rule in our work. Not only we can check the subtype property, but also can verify the behavior
compatibility of composite results that are available by composition rules. This new mechanism is helpful for
analysts as well as designers, and it can be used as a guideline for incremental and compatible construction of

component based software.

1. Introduction

Software systems have become larger and more complex
than before. In such trend, the inheritance mechanisms
have been suggested as a good solution for building
complex and large systems. However, the flexible
management of subclassing sometimes causes unexpected
behaviors. Past experience has shown that unrestricted
use of inheritance mechanisms leads to system
architectures that are hard to understand and maintain,
since there are usually arbitrary differences between a
supertype and its subtype.

Prior work[1] is not enough to formulate behavior
compatibility, especially when it comes to the /liveness

properties[4]. In this paper, we suggest a novel
mechanism for component evolution based on two
composition rules. With these composition rules,

incremental construction of software is possible.

Generally, state machines can be used to specify a
software system. Like the state machine, object-oriented
design methodologies typically use notations based on
Finite State Automata, Petri-nets, and Statecharts[5].
Among these notations, we use Statecharts. Through the
composition rules, simple Statecharts can be extended to
the complex ones.

This paper is organized as follows. Section 2 discusses
about the behavioral compatibility guaranteeing method.
The notion of subtyping provides a basis for checking the
behavior compatibility between components. In Section 3,
we provide an intuitive explanation about two composition
rules with examples. Section 4 describes a formal
definition of the delegation rule and Section 5 shows the
behavior compatibility of the composition result. In section

10

6, we conclude our approach with the description of future
work.

2.Related Work (Compatibility guaranteeing utensil: subtyping)

The reuse of existing components to the utmost makes
the building of software asy. Many concepts and theories
such as inheritance, aggregation and delegation have been
introduced to support reuse. Using these, we propose a
set of generic composition operators for software design
and implementation. It can provide a mechanism for
incremental software construction.

Taivalsaari{6] mentioned that inheritance can be used in

two utensils. One is for implementation reuse, and another
is for specialization. When focusing on specialization,
inheritance can be regarded as incremental modification
mechanism rather than for conceptual modeling. Because
of flexible management, many object-oriented languages
have given up strong constraints for inheritance[7].
However, it causes too faint relationships between a
supertype and its subtype thus makes software hard to
understand and fuzzy. On the other hand, subtype property
checking ensures that unexpected behavior does not
occur. So it introduces an alternative view.
Wing[8] suggested a clear understanding of how subtypes
and supertypes are related especially in the criteria of
safety property. Subtype requirement{8] provides a
stronger constraint for the behavior of subtypes. Michael
Schrefl and Markus Stumptner[4] propose a set of
necessary and sufficient rules for checking behavior
consistency between object life cycles of object types in
specialization hierarchies with multiple inheritances. They
define the behavior checking rules in the realm of Object

2003 = =4 283 B sk E=T4 Vol. 30, No. 1

Behavior Diagram, similar with Petri-net and adjust three
types of consistencies {(observation, weak invocation,
strong invocation consistency) as liveness property. In
this paper, we use these three types of consistencies for
checking behavioral consistency as subtype requirements.

3. Informal description of two composition rules

There are two kinds of composition rules. One is the
delegation rule that can be used as a kind of black-box
composition. A designer is interested only in the
functionality of a component and composition of
functionalities. Another is the mixin rule that can be used
as a kind of white-box composition. With the mixin rule,
designer can make many variations of one component
easily.

3.1 Delegation rule

Delegation[2] is an implementation mechanism where an
object forwards an operation to another object for
execution. To simplify the problem, we assume that the
delegation rule is a binary operation between two
components. Fig.l represents two components for a
virtual memory paging scheme. Component A allows read
only access and Component B allows write only access. A
and £ have similar behaviors on the different target. The
functionalities of A and B are realized in I composition
result. Fig.2 shows a Statechart for D.

r IR
A pageOut
Funmapeed
pageRead
. 2
B pageOut
WMapped Wunmapped
pageWrite
N J

{Fig.1]1 Two components for virtual memory paging scheme

D
A B8
pageOut. \ pageOut—_,
: z :"M : |

pageRead pageWrite

_

3.2 Mixin rule

A mixin is an abstract subclass[3], definition that may be
applied to different superclasses to create a related family
of modified classes. For example, a mixin might be defined
as adding a border to a window class: the mixin could be
applied to any kind of window to create a bordered-

makeCopy({A)

J

[Fig.2] Composition result D

window class. We assumed that the mixin rule is also a
binary operation between two components. Fig.3 shows
the idea of the mixin rule,

=

.+ Mixin rule operator
. m mixin
. A, B': composition result (subtype of A and B)

A+m=A'
B+m=8'

[Fig.3] Mixin rule

4, Formal definition of delegation rule (A*B=D)

As we mention before, the delegation rule is a binary
operation. To get rid of ambiguity, we define A, B and D
formally as Statechart.

To describe this rule, we regard a Statechart as a set of
tuples (so, st, S, E, C, T) and a function f.
So - Initial state
st © final state
S ! set of states
E : set of events
C : set of conditions
T :setof transitiont e Tg (se S x
S)
® f:afunction that mapse e E toc e C
Then, A and B can be represented as follows.
[] A (Sap, Saj, SA, EA. CA, TA) . f/\
® B (sbog, sby, Ss, Eg, Cg, Ts) , {5

eeE xse

To make explanation simple, we assumed that A and B
have similar behavior and D want to have both behavior of
A and B. For example, A represents rent video and B
represent rent DVD. D wants to have two behaviors at the
same time. This assumption is represented using transition
mapping between A and B.
® For every transition of t , € Ta, there exists a

corresponding transitionty, € T
® For every transition of t , € Ty, there exists a
corresponding transition t ; € Ta
This assumption ensures that there exist corresponding
states and events between Statecharts A and B.

On the above basic model and assumption, the delegation

rule is defined as follows:

® Every state of A and B 1s included in the states of D.

® D’ s initial state can be A’ s initial state or B’ s
initial state

® D' s final state can be A’ s final state or B’ s final
state

® Every event of A and B is included in the events of D.

® Every transition of A and B is included in the
transitions of D.

® Make a new event that provides transition from A to B
with condition c1. (e awslcl] € E p)

® Make a new event that provides transition from B tc A
with condition c2. (e swoalc2] € E p)

® Make new transitions from all states of A to B s
initial state.(Vs € Sa [(s, e awslcl], sag) e Tpl)

2003 = =74 33 &

2

A

W ¥ =221 Vol. 30, No. 1

® Make new transitions from all states of Bto A’ s
initial state. (Vs € Spl (s, € poalc2], sbo) € Tpl)
According to the delegation rule, the Statechart of
composition result D can be described.
® D (sdo, sdi. Sp, Ep, Cp, Tp) , o
Each column of D is defined as follows:

® D : (sdo, sdr, Sp, Ep, Cp, Tp) , fp

® sdp = sap U sbho

® sdf = sar U sby

® Sp=SaUSe

® Ep=Ea UEgU {new e awalcl]} U {new e pwoalc2]}

® Cp=CaUCgU {newcl} U {new c2}

® Tp=Tsa UTgU {newte Tp(VseSal(s e
awoBlcl], 53001)} U {newte Tp(V¥seSal(s e
Boalc2], sbp)) }

® fp:eeEp->ceCp

By the delegation rule, A and B of Fig.1 is composed to D
as represented in Fig.2.

5. Compatibility check of delegation rule

Michael Schrefl[4] suggests three types of properties:
observation consistency, weak invocation consistency, and
strong invocation consistency. They provide necessary
and sufficient rules for checking behavior consistency and
compatibility. Moreover, they are useful for checking
behavior consistency as subtype requirement. In the
delegation rule, A and B are supertypes of D. In this
Section, we will show that D satisfies a subtype
requirement of A and B.

First, observation consistency[4] means that each
instance of a superitype must also be observable in an
instance of its subtype. It requires that every possible
trace (i.e. sequence of transitions) of a supertype must be
observable at its subtype. Since D has ail traces of A and
B, D satisfies observation consistency.

Second, weak invocation consistencyl[4] is satisfied if
one can use instances of a subtype in the same way as
instances of its supertype: any sequence of transitions
that can be performed on instance of a supertype can also
be performed on instances of its subtype. Because D does
not have any new functionality which does not appear at A
and B, every sequence of transitions that can be
performed on instances of A and B can also be performed

on instances of D. So D satisfies weak invocation
consistency.
Third, strong invocation consistency[4] requires

additionally that transitions added at a subtype do not
interfere with transitions inherited from the supertype.
However, in the middie of trace A, (i.e. from any state of
A) new event may interfere sequence of transitions and a
state of any new event may move to initial state of B.
Therefore, D does not satisfy strong invocation
consistency.

In conclusion, D satisfies observation consistency and
weak invocation consistency among these three criteria.
These ensure behavior consistency of D and guarantee
subtype requirements at weak invocation level.

12

6. Conclusion and future work

In this paper, we suggested composition rules and
checked compatibility of composition result using subtype
requirement. Although the mixin rule is not defined in
detail yet, the delegation rule is formalized and checked
behavioral consistency. Through these two rules, a
construction mechanism with efficient and incremental
reuse is provided. Moreover, this mechanism guarantees
compatibility of software component and becomes a safe
and easy software evolution guideline.

For the future work, more concrete proof of subtype
requirements has to be investigated. In addition, extension
of two rules is considerable. Our research goal is to
propose a set of generic composition algebra that makes it
possible to reason out compatibility at various levels and
to generate automated synthesis of code.

7. Reference

[1] B. Meyer, Object-Oriented Software Construction.
Prentice Hall, 1988.

{2] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.

Lorensen, Object-Oriented Modeling and Design,
Prentice—Hall International, 1991
[3] Gilad Bracha and William Cook, “ Mixin-based

Inhritance,” In Proceedings of ECOOP/OOPSLA’ 90,1990.
pp.303-311

[4] M. Schrefl and M. Stumptner, “ Behavior-consistent
specialization of object life cycles,” ACM Transactions on
Software Engineering and Methodology, vol. 11, pp. 92—
148, January 2002

[5] David Harel, “ Statecharts: A visual formalism for
complex systems,” Science of Computer Programming,
p.p. 231-274, August 1987

[6] A. Taivalsaari, “© On the notion of inheritance,” ACM
Computing Surveys, vol. 28, No.3,pp.438-479, 1996
[7] Peter Wegner, ” OOPS MESSENGER,” ACM PRESS,

August 1990

{8] B. H. Liskov and J. M. Wing, “ A Behavioral notion of
subtyping,” ACM Transactions on Programming
Languages and Systems, vol. 15, pp. 1911-1841,
November 1994

