An Effective Pre-refresh Mechanism for Mobile Handheld Device’s
Embedded Web Browser

Hua Qiang Li°

s

Young Hak Kim

Department of Computer Engineering ,
Kumoh National Institute of Technology

huagiang@cespcl kumoh.ac.kr®, yhkim@cespcl.kumoh.ackr

ABSTRACT

Mobile handheld devices such as PDA(Personal Digital Assistant) and Cellular Phone are more and more
popular for personal web surfing. But today, most mobile handheld devices have relatively poor web
browsing capability because of the small bandwidth of wireless connection, the small speed of CPU, the
small capacity of RAM and Flash ROM, the small display size of LCD and the short lifecycle of battery.
Users have to endure bigger communication latency than Desk PC’s one because of these factors. In this
paper, we propose an effective pre-refresh mechanism for handheld device’s embedded web browser so as to
make user’s web surfing faster. The experiment was done using the simulator designed by ourselves and the
experiment result demonstrates the proposed mechanism has a good performance to make web surfing faster.

1. Introduction

Recent years, World-Wide Web technologies and mobile
handheld devices have had a very fast development. Now, most
mobile handheld devices have been integrated with embedded
web browser for surfing the internet, especially PDA products.
So users can access the internet from everywhere at any time.

But now, most mobile handheld devices have small wireless
bandwidth, typically the connection speed is anywhere from
9600bps(bits per second) to 28.8 kbps[1]. At these low rates it
can take up to 3.5 minutes to download a 250KB web page. If
the link is very lossy, this time can be significantly extended.
Processors used in most handheld devices do not have the
power of those found in PCs. Taking PDA as an example, most
current PDAs’ CPU speed is from 160MHz to 206MHz. Web
pages with large amounts of graphical content or a lot of script
files need to be handled by the browser decoding and
interpreter engines. This can overload the processor and cause
the device to become unresponsive, and in turn, unusable.
Adding handheld device’s small memory, small display size
and short battery lifecycle, all these factors bring big
communication latency for users to access the internet.

In the following, we first summarize the existing
technologies for reducing client latency, indicate their
advantages and disadvantages, then introduce our proposed
mechanism that makes the internet surfing faster for mobile
handheld device users.

2. Related Works

Ever since World-Wide Web emerged, reducing client
latency has been one of the primary concerns of the Internet
R&D community. Many techniques were proposed for
reducing client latency.
® Prefetching between caching proxies and browsersf2] is a
well-known technique for reducing latency for modem users.
Because the low modem bandwidth is a primary contributor to
client latency, this approach relies on the proxy to predict
which cached documents a user might reference next, and
takes advantage of the idle time between user requests to push

151

or pull the documents to the user. This approach can reduce
user perceived latency up to 23.4% as the author said. But this
approach is not supported by most current ISPs and LAN
Proxies, because it is very difficulty to realize and imposing a
big process burden for proxies.

® Large Browser Cache is another technique to reduce
client latency[2]. It increases the hit ratio and reduces network
traffic. Infinite browser cache(almost no replacement occurs) is
supposed in the experiment[2]. The result shows it reduces
4.1% client latency. But this approach is absolutely not fit for
mobile handheld devices. Taking PDA as an example, general
deskpc’s browser cache has the a default size of 5-8MB[2]. But
most current PDA products have the system memory from
8MB to 32MB and Flash ROM from 2MB to 32MB. It is
impossible to allocate a big browser cache to PDA.

@ Delta Compression technique[3] only transfer modified
web pages between the proxy and client. That is, if an old copy
of the modified page exists in the browser cache, the proxy
only sends the difference between the latest version and the old
version. This approach can eliminate 88% of bytes in transfers
of modified objects, according to the results in[3]. But until
now, this technique is not a official standard for extension of
HTTP[6], most current web servers, ISPs, Proxies and Clients
don’t support it. So mobile handheld device which uses
wireless modem for web surfing can’t get benefits from Delta
Compression Technique.

@ Application-level compression to HTML documents was
investigated in the studies[3,4]. It has suggested that HTML
texts can be first compressed, and then transferred from one
end to another. HTTP/1.1 supports application-level compress-
ion via the “transfer-encoding” tag[5]. This technique can
eliminate 25% of bytes in transfers of HTML documents,
according to the average number reported[3]. But this
technique needs CPU overhead for compression and
decompression. It is not practical for slow speed CPU used by
mobile handheld device. It will aggravate the burden of CPU
and memory of mobile handheld device during web surfing and
may result in more latency for users.

200249 %

57 B33 72 U =4 Vol. 29. No.2

3. Proposed Mechanism

Because the techniques mentioned above are not fit for
reducing client latency for mobile handheld devices, we
propose “the effective pre-refresh mechanism”, and this
mechanism also works well in Desk PC’s browser.

3.1 Overview

Through plentiful observing, we find mobile handheld
device’s user has his habit in web browsing. It means every
user has his some favorable web addresses. For example,
somebody likes yahoo, google, daum, microsoft etc. From the
browsing beginning, user always opens one of his favorable
web pages, and finds the information which he wants. In this
case, after a long period, objects saved in mobile-handheld
device’s browser’s cache are these which user always browses.
So most user’s favorable web objects are saved in
mobile-handheld device browser’s cache.

In addition, during user’s reading web documents, there is
much free time wasted. We should use the free time to
pre-refresh the objects in cache. Through research, we find
when user begins his browsing, almost all the HTML
documents in the cache expired. For every request, a browser
mainly executes below steps[7], seeing Figure 1:

refresh present

Send request

Figure 1: Steps for every request in browser

So we should make browser pre-refresh the expired web
objects in the cache during idle time. In this case, after users
read documents, if users request the web objects which are
already pre-refreshed in the cache, the web objects will be very
fast showed to user. User will like this fast speed. Furthemore
this mechanism will fully use CPU process ability and network
bandwidth during idle time, consequently reduce latency and
save money for user during web browsing.

3.2 Implement scheme

The basic assumptions behind “pre-refresh mechanism” are:

® Users have idle times between requests, because users
often read some parts of one document before jumping to
the next one.

® The browser can predict which web pages a user will
access in the near future based on number of the reference
for every cached abject abserved from the past period.

® The browser has a cache that holds user’s favorable web
pages. Furthermore, because most mobile handheld
device has small Flash ROM, it can’t allocate much

capacity for browser cache, and most commercial web sites
make their web pages so big, for example, the full content
of yahoo main page is 128KB including HTML
documents, GIF, JPG, Javascript, Flash etc. It is impossible
for embedded browser to support and cache all the web
objects. So we assume only HTML documents are cached.
It is reasonable because the text information in the HTML
documents are most important for users.

The cumulative distribution of user idie time in the UCB,
DEC and Pisa traces[2] shows 40% of the requests are
preceded by 2 to 128 seconds of idle time, indicating plenty of
pre-refresh opportunities.

The basic pre-refresh mechanism are:

1. In the embedded browser cache, we allocate an attribute
named “reference number” to the cached HTML document
object. This attribute means the number of reference for
every cached HTML document in past period. We will use
this attribute as primary index to sort the cached HTML
documents. If a HTML document object is first cached, we
assign 1 as the value of this attribute. Later, if user requests
this HTML document object again and this HTML
document object is always in the cache, we will increase
the attribute’s value with 1.

2. We use the attribute “reference number” as the primary

index and the attribute “size” as the second index to sort all
cached HTML document objects. The attribute “size”
means the size of the cached HTML document. The
attribute “size” is a default attribute in most browser cache.
For example, Microsoft Internet Explorer’s cache has 8
attributes “size”, “name”, “internet address”, “type”,
“expiration date”, “last modified date”, “last accessed
date” “last validated date”. During sorting, we use
“reference number” to arrange cached HTML documents
in descending order, when “reference number” is same, the
one which has relatively small “size” value will be sorted
ahead. For every request, we update the sort.

3. We use Least Frequently Used(LFU) removal policy with

the attributes “reference number” and “size” to remove
HTMIL documents when the cache is saturated. In this
case, the HTML documents with low “reference number”
value and big “size” value will be removed continuously
until the cache has enough room for the coming HTML
document.

4. We provide a background process to pre-refresh cached

HTML documents during idle time. This process runs from
browser’s open to close. According to experience, “idle
time” judge condition is appointed to 10 seconds. It means
if user has no request during 10 seconds, this process will
pre-refresh cached HTML documents continuously
according to Step 2’s sort. During pre-refreshing, if user
has request, pre-refresh will be stopped unless the request
is for the object that is being pre-refreshed.

3.3 Performance Metrics
We are mainly interested in the following performance
metrics:
® Request Savings: the number of times that a user request
hits the pre-refreshed HTML documents in the browser
cache, in percentage of the total number of user requests.

20024 E JFPEAN S HeREl

A 4
fL%

% Vol. 29. No. 2

Wasted Bandwidth: the number of times that the
pre-refreshed HTML documents are not hitted by user
requests, in percentage of the total number of user
requests.
“Request Savings” is the primary goal of pre-refreshed
mechanism. It will prove if the pre-refreshed mechanism has a
good performance for reducing latency for users. “Wasted
Bandwidth” can be tolerated, because it only uses idle time’s
network bandwidth and CPU process ability, and if there is no
pre-refreshed mechanism supported, these network bandwidth
and CPU process ability are also wasted.

4. Simulation and Performance Analysis
Because it is very difficult and time consuming to modify the

open source embedded web browsers in order to implement

our proposed mechanism and do performance analysis, we
designed the simulation tool with Visual Basic6.0 for getting
the result of performance metrics mentioned above. Also, we
run the simulator in the Notebook Computer with CPU
133MHz and university’s LAN with simulator’s cache size
512KB. Because this Notebook Computer CPU speed and
network speed is very close to the performance of mobile
handheld devices (especially close to PDA), it ensures our
experiment result is very close to the real environment.

Steps for implementing the “Pre-Refresh Mechanism™ and

“Performance Metrics” with our simulator are:

1. We use Visual Basic’s “Web Browser Object” and
“Internet Transfer Object” to make a simple web browser.
We use it to simulate the embedded web browser. It is
reasonable because our work mainly concentrates on the
browser cache and pre-refresh function. It doesn’t
interfere to the vision effect of the small size screen in
most mobile handheld devices.

We use IE’s cache directory “Temporary Internet Files”
and a ACCESS Database to simulate the cache for Step
1’s simple web browser. In the access table, we mainly
create four fields “Reference Number”, Size”, "Hit” and
“Miss”. The meaning of “Reference Number” and “Size”
is already explained in “3.2 Implement scheme”. “Hit”
means the number of times of user request hits the
pre-refreshed HTML documents. The sum of total
records “Hit” field’s value divided by total request
number is the value of performance metric “Request
Savings”. “Miss” means the number of times that the
pre-refreshed HTML documents are not hitted by user
requests. The sum of total records “Miss” field’s value
divided by total request number is the value of
performanee metric “Wasted Bandwidth”.

We simulate 512KB for cache capacity and use LFU
removal algorithm with “Reference Number” and “Size”
fields to remove cached HTML documents when cache is
saturated.

We use “Timer Object” to do “pre-refresh mechanism”
during idle time and assume the idle time judge condition
is 10 seconds.

The experiment result is “Request Savings” has the value

23.16%, “Wasted Bandwidth” has the value 47.35%. So our

proposed “pre-refresh mechanism” makes web surfing faster

than there is no this mechanism for mobile handheld device
users. Though “Wasted Bandwidth” is high, but as we explain

153

in “3.3 Performance Metrics”, if there is no pre-refreshed
mechanism supported, these network bandwidth and CPU
process ability are also wasted during idle time.

Furthermore, we run the simulator with Desk PC with CPU
PlIll 800MHz and simulator’ cache 119MB, the experiment
result shows our proposed mechanism gets greatly better
performance .

5. Conclusions and Future Work

Today, more and more internet population use mobile
handheld device(such as PDA, Cellular Phone etc.) to access
the World Wide Web. But users spend a lot of time impatiently
waiting for web pages to come up on screen. In this paper, we
summarized the existing techniques to reduce client latency,
indicating their strength and weakness, then we proposed our
“An effective pre-refresh mechanism for mobile handheld
device’s embedded web browser”. Our proposed mechanism
uses the idle time of user reading web pages to pre-refresh
cached HTML documents in the embedded web browser.
Through our simulation, it greatly reduces the latency for users
during web surfing.

Although this mechanism has been aimed primarily at
mobile handheld device’s embedded web browser, the author
believes that it may also be appropriate for Desk PC’s Browser.
A number of future work will be done.
® We will practically implement this mechanism in the open
source embedded web browser in order to evaluate it’s
performance in the real environment.

We will design more performance metrics and use more
traces to more accurately evaluate the performance of our
proposed mechanism.

We will merge other techniques with our proposed
mechanism to more reduce latency for users.

References

[1] Anthony Massa, “9 Tips for Improving Embedded Web
Browser Design”, http://www.commsdesign.com, Feb.5, 2002.
[2] Li Fan, Pei Cao, and Quinn Jacobson, “Web Prefetching
Between Low-Bandwidth Clients and Proxies: Potential and
Perfromance”, International ACM Conference on Measurement
and Modeling of Computer System, PP. 178-187, 1999.

(31 Jeffrey C. Mogul, Fred Douglis, Anja Feldmann, and
Balachander Krishnamurthy, “Potential benefits of delta
encoding and data compression for http”, In Proceedings of
ACM SIGCOMM’97, August 1997, Available from
http://www.research.att.com/~douglis/

[4] Henrik Frystyk Nielsen, Jim Gettys, Anselm BairdSmith,
Eric Prudhommeaux, Hakon Wium Lie, and Chris Lilley,
“Network performance effects of http/1.1”, In Proceedings of
ACM SIGCOMM’97, August 1997, Available from
http://www.w3.org/Protocols/HT TP/Performance/Pipeline

[5] R.Fielding, J.Gettys, J.Mogul, H.Frystyk, and T.Berners-
Lee, “Hypertext Transfer Protocol-HTTP/1.1 RFC 2068, Jan
1997.

[6] Jeffrey C. Mogul, “What is HTTP Delta Encoding”,
http://webreference.com/internet/software/servers/http/deltaenc
oding/intro/, 2002.

[7] Md. Ahsan Habib, Marc Abrams, “Analysis of Sources of
Latency in Downloading Web Pages”, WebNet 2000, October
30 — November 4, 2000 San Antonio, Texas, USA

