Phylogenic-analysis of wild rice using AFLP and nutrients analysis

Hyo Jin Lim^{1*}, Kyung Ho Kang², Jwa Kyung Sung³, Myung Bo Shim¹, Tae Wan Kim¹

Department of Plant Resources Science, Hankyong National University, Ansung

²Crop Experiment Station, RDA, Suwon

³Department of Agronomy Chungbuk National University. Cheongiu

AFLP 및 양분 분석을 이용한 야생벼의 계통학적 연구 임효진^{1*}, 강경호², 성좌경³, 심명보¹, 김태완¹ ¹한경대학교 식물자원과학과, ²작물시험장, ³충북대학교 농학과

Objective

To illuminate a genetic relationship between nutritional- and genomic distance in wild rices, 14 accessions of 4 *Oryza* species were analyzed using 7 selective AFLP primers comparing nutrient contents in grain.

Materials and Methods

1. Plant materials

O. sativa accession: 5-species

O. officinalis accession: 7-speciesO. ridleyi accession: 1-species

O. brachyantha: 1-species

2. AFLP and nutrient analysis

Leaf samples for DNA extraction were obtained from 15-old-day rice seedling. According to Vos et al. (1995), selective amplification was carried out in 25 $\mu\ell$ reaction volumes using 5 $\mu\ell$ template(Table 1). PCR products were resolved on 5% polyacrylamide gel. Each AFLP fragment/marker was treated as a unit character and scored as binary code(1/0=+/-). The 1/0 matrix was used to calculate dissimilarity coefficients following Nei and Li(1979). The resulting distance matrices were used to construct an unweighted pair-group method with arithmetic means(UPGMA) phenogram using software package NTSYS-PC 2.11. These phylogenic distance matrix was compared to dissimilarity matrix on a basis of nutrient contents in the grains, resulting

RESULTS

AFLP analysis revealed total 219 fragments. In total, 211 fragments were identifiable(96.3 %). Genetic distances exhibit 4 well-distinguishable groups corresponding to AA, BB, BBCC, CCDD. Species of Sativa complex, O. barthi and O. glaberrima were well-differentiated from other accessions, O. glumaepatula and O. Nivara. On a basis of nutrient contents, O. barthi and O. glaberrima were also showed most different to O. nivara.

Table 1. The sequence of adapters and primers

	Name	Sequence	
Ligation	Mse-	5'-GACGATGAGTCCTGAG-3'	
	adapter I	TACTCAGGACTCAT	
	Pst-	5'-CTCGTAGACTGCGTACATGCA-3	
	adapter I	CATCTGACGCATGT	
Pre- amplification	M00	5'-GATGAGTCCTGAGTAA-3'	
	P00	5'-AGACTGCGTACATGCAG-3'	
Selective- amplification	M primer	M40(MseI+AGC), M46(MseI+ATT),	
		M38(MseI+ACT), M43(MseI+ATA)	
	P primer	P33(PstI+AAG), P63(PstI+GAA),	
		P34(Pst I+AAT)	

Table 2. No. of fragments and polymorphism according to AFLP primer combinations

Primer combination	No. of total fragment	No. of polymorphic fragment	polymorphism(%)
P33/M40	52	48	92.3
P63/M46	36	33	91.7
P34/M38	55	54	98.2
P63/M43	76	76	100.0
Total	219	211	96.3
Mean	54.8	52.7	