New techniques for estimating the shut-in pressure in hydro-fracturing pressure-time curves

  • Choi Sung O. (Korea Institute of Geoscience and Mineral Resources)
  • Published : 2003.11.01

Abstract

A definite shut-in pressure in hydraulic fracturing techniques is needed for obtaining the correct information on the in-situ stress regimes in rock masses. The relation between the behaviour of hydraulically induced fractures and the condition of remote stress is considered to be major reasons of an ambiguous shut-in pressure in hydraulic fracturing pressure-time history curves. This paper describes the results of a series of numerical analyses carried out using UDEC(Universal Distinct Element Code, Itasca), which is based on the discrete element method, to compare several methods for determining the shut-in pressure during hydraulic fracturing. The fully coupling of hydraulic and mechanical analysis was applied, and the effects of four different discontinuity geometries in numerical modelling have been investigated for this purpose. The effects of different remote stress regimes and different physical properties on hydraulic fracture propagation have been also analyzed. Several methods for obtaining shut-in pressure from the ambiguous shut-in curves have been applied to all the numerical models. The graphical intersection methods, such as (P vs. t) method, (P vs. log(t)) method, (log(P) vs. log(t)) method, give smaller values of the shut-in pressure than the statistical method, (dP/dt vs. P). Care should be taken in selecting a method for shut-in pressure, because there can be existed a stress anomaly around the wellbore and fracturing from the wellbore by a constant flow rate may have a more complicate mechanism.

Keywords