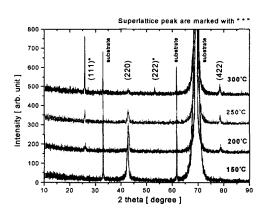
1189, Br-24


Characterization of Heusler Alloy Thin Film, Cu₂MnAl and Co₂MnSi, Deposited by Co-sputtering Method

Keewon Kim¹, Soon-Ju Kwon*¹, and Tae-Wan Kim²

Ferromagnetic Heusler alloys draw renewed interest because their half-metallic characteristics are advantageous to increase the transport signal in spintronic devices, such as MTJ. However, relatively high thin film processing temperature for acceptible magnetic properties is hardly compatible with MTJ. Recently, an exception was reported with Co₂Cr_{1-x}Fe_xAl case. [1] So, we have investigated the relationship between structural ordering and magnetic properties, and how processing condition can be optimized.

Thin films of Heusler alloy, Cu₂MnAl and Co₂MnSi, are deposited on thermally oxidized Si substrate with various substrate temperatures and compositions, by co-sputtering method using 3 single element targets. Thin films are characterized by EDS, VSM, XRD, TEM, and electrical transport measurement. In general, magnetic properties and structures are strongly dependent on substrate temperature. The films fabricated at room temperature show paramagnetic behaviour and very fine crystalline feature in XRD

pattern. Increasing substrate temperature, there appear polycrystalline features (superlattice peaks). accompanied with increase of M_c and S(M_c/M_c). Also, the electrical resistivity implies that the electronic structures are heavily disturbed in the films fabricated at room temperature. These results suggest that structural ordering strongly affects the magnetic, electrical properties of Cu₂MnAl and Co₂MnSi. To understand the ordering process, annealing experiments have been performed for the film deposited at room temperature. Magnetic, structural properties are monitored with annealing temperature and time. To reach fully magnetized state of Cu₂MnAl, it takes ~20 minutes at the 200'C, but less than 3 minutes at 300'C.

1

Fig. 1 X-ray diffration pattern of Cu₂MnAl, deposited at different substrate temperature.

References

[1] K.Inomata, et al. Jpn. J. Appl. Phys. Vol. 42 (2003), L419

¹ Department of Mataerials Science and Engineering, POSTECH, San 31, Hyoja Dong, Nam Gu, Pohang, 790-784, South Korea (R.O.K)

² Materials & Devices Lab. Samsung Advanced Institute of Technology (SAIT), San 14-1, Nongseo Ri, Kiheung, Yongin, 449-712, South Korea (R.O.K)

^{*}Corresponding author: e-mail: soonju@postech.ac.kr, Phone: +82-54-279-2137, Fax: +82-54-279-2399