## Transport and magnetic properties of delafossite CuAl<sub>1-x</sub>Mn<sub>x</sub>O<sub>2</sub> ceramics

Hyoun Soo Kim<sup>1</sup>, Byoung Seon Lee<sup>2</sup>, Sung Hwa Ji<sup>2</sup>, Hyojin Kim<sup>2</sup>, Dojin Kim<sup>2</sup>, YoungEon Ihm<sup>2</sup>, and Woong Kil Choo<sup>1</sup>

Wide band gap semiconductors have attracted much attention as a promising class of materials for room ferromagnetism. Recently, theoretical and experimental works suggest that carrier-mediated ferromagnetism is more favourable with p-type conduction. The delafossite oxide CuAlO<sub>2</sub> is a p-type wide-gap materials with a band gap of ~3.5 eV and hole concentration of the order of 10<sup>17</sup> cm<sup>-3</sup>. Here we report on the transport and magnetic properties of Mn-doped CuAlO2 ceramics, synthesized by a standard solid state reaction method in an air atmosphere at a sintering temperature of 1150 °C. X-ray diffraction analysis revealed that the equilibrium solubility of Mn ions in CuAlO2 is as low as about 3 mol%. Nondoped samples were semiconducting with hole concentration of  $\sim 5.8 \times 10^{16}$ 

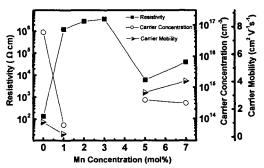



Fig 1. Electrical resistivity, carrier concentration and mobility at room temperature with varying Mn concentration in  $CuAl_{1-x}Mn_xO_2$  ceramics  $(0 \le x \le 0.07)$ .

cm<sup>-3</sup> and the doping of Mn rapidly increased the resistivity. As a result,  $CuAl_{1-x}Mn_xO$  was strongly insulating for x = 0.02 and 0.03. This suggest that, contrary to common expectations,  $Mn^{2+}$  substitution for  $Al^{3+}$  in the  $CuAlO_2$  lattice results in oxygen vacancies to maintain charge neutrality, leading to the compensation of existing acceptors. The temperature dependence of the magnetization for x = 0.02 showed an almost paramagnetic behavior with a negative Curie–Weiss temperature of about -11 K, indicating an intrinsic antiferromagnetic coupling between Mn ions in  $CuAlO_2$ . The field dependence of the magnetization at 5 K also exhibited no hysteresis shape.

<sup>&</sup>lt;sup>1</sup> Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Gusong-dong, Yousong-gu, Daejeon 305-701, Korea

<sup>&</sup>lt;sup>2</sup> Department of Materials Science and Engineering, Chungnam National University, Daeduk Science Town, Daejeon 305-764, Korea

<sup>\*</sup>Corresponding author: e-mail: hyojkim@cnu.ac.kr, Phone: +82 42 821 7647, Fax: +82 42 822 3206