1261.rtfAr-7

Measurement of Magnetocardiogram in a weak MSR using YBCO dc SQUID magnetometers.

K. Yu, I. S. Kim, Y. H. Lee, K. W. Kim and Y. K. Park

Biomagnetism Research Center, Korea Research Institute of Standards and Science Yusong PO Box 102, Daejeon 305-600, Republic of Korea

*Corresponding author: e-mail: inskim@kriss.re.kr, Phone: +82 42 868 5238, Fax: +82 42 868 5475

Single layer direct-coupled YBCO SQUID magnetometers have been designed and fabricated for the purpose of MCG measurements in a magnetically disturbed environment. The magnetometers consisting of 16 parallel loop pickup coil were prepared on 10 mm \times 10 mm STO bicrystal substrates. The direct coupled YBCO SQUID magnetometers have field sensitivity B_{Φ} of 4.5 nT/ Φ_0 and magnetic field noise B_N of 30 fT/Hz^{1/2} measured at 100 Hz, and exhibit very stable FLL operation under magnetically noisy environment.

We have performed various MCG measurement tests by the methods of single SQUID magnetometer, and 1-st order electronic gradiometers of axially arranged and vertically arranged SQUID sensors. Measurement results of MCG signals in a weak-MSR are discussed.

References

- [1] F. Ludwig, A. B. M. Jansman, D. Drung, M. O. Lindstroem, S. Bechstein, J. Beyrer, J. Flokstra, T. Schurig, "Optimization of direct-coupled high-T_C SQUID magnetometers for operation in magnetically unshielded Environment," *IEEE Trans. Appl. Supercond.*, vol. 11, pp. 1315-1318, (2001).
- [2] I. S. Kim, J. M. Kim, H. R. Lim, Y. K. Park, "Development of a high-T_C gradiometer system," *IEEE Trans. Appl. Supercond.*, vol. 11, pp. 1399- 1362, (2001).
- [3] S. Kuriki, H. Oyama, A. Hayashi, S. Hirano, T. Wahio, "Development of a high-T_C SQUID based magnetometer system for MCG measurement.", *IEICE Trams. Electron.*, vol. E85-C, NO. 3, pp. 670-676, (2002).
- [4] H.E. Horng, S.Y. Hung, J.T. Jeng, S.H. Liao, S.C. Hsu, J. C. Hwang, H.C. Yang, "Biomagnetic measurements with HTS SQUID magnetometers in moderate shielded environments.", *IEEE Trans. Appl. Supercond.*, vol. 13, pp. 381-384, (2003).