Growth and characterization of spinel-type magnetic semiconductor ZnCo₂O₄ by reactive magnetron sputtering Hyun Jung Kim¹, In Chang Song², Jae Ho Sim², Hyojin Kim², Dojin Kim², YoungEon Ihm², and Woong Kil Choo¹ We report the synthesis of cubic spinel ZnCo₂O₄ thin films and the effects of the oxygen partial pressure in the sputtering gas mixture on electrical and magnetic properties of the ZnCo₂O₄ films. Furthermore, we present a bipolarity of sputtered spinel ZnCo₂O₄ films by tuning of the sputtering gas mixture and the conduction type dependence of ferromagnetism. Zinc cobalt oxide films were grown on SiO₂ (200nm)/Si substrate by reactive magnetron co-sputtering method using Zn and Co metal target in a mixed O₂/Ar atmosphere. From X-ray diffraction measurements, we found that the crystal structure of zinc cobalt oxide films grown under an oxygen rich condition (the partial pressure ratio $O_2/Ar = 9/1$) changes from the wurtzite-type of Zn_{1-x}Co_xO to the spinel-type ZnCo₂O₄ with the increase of the Co/Zn sputtering Fig 1. Electrical conductivity (σ), carrier concentration (n, p), and mobility (μ) in cubic spinel ZnCo₂O₄ films for various O₂ partial pressure ratio. ratio, D_{Co}/D_{Zn} . In addition, the (111)-preferred growth was shown by X-ray diffraction patterns for a fixed sputtering ratio, D_{Co}/D_{Zn} of 2.0. We note that the electrical properties including conduction type and carrier concentration of the highly oriented films were varied by oxygen partial pressure ratio : n-type and p-type for oxygen partial pressure ratio below 70 % and above 85 %, respectively. Lastly, the conduction type dependence of magnetic properties of the $ZnCo_2O_4$ films were discussed by the analysis of magnetization data measured from the superconducting quantum interference device. A ferromagnetic coupling was observable in p- $ZnCo_2O_4$, whereas an antiferromagnetic interaction was found for n- $ZnCo_2O_4$ film. Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Gusong-dong, Yusong-gu, Daejeon 305-701, Korea ² Department of Materials Science and Engineering, Chungnam National University, Daeduk Science Town, Daejeon 305-764, Korea ^{*}Corresponding author: e-mail: hyojkim@cnu.ac.kr, Phone: +82 42 821 6636, Fax: +82 42 822 3206