Temperature dependence of tunnel magnetoresistance of IrMn based MTJ T. Stobiecki*¹, P. Wisniowski¹, M. Czapkiewicz¹, C. G. Kim², C. O. Kim², Y.K. Hu² M. Tsunoda³, M. Takahashi³ ³ Department of Electronic Engineering, Tohoku University, 980-8579 Sendai, JAPAN The temperature dependence of spin-polarized tunneling magnetoresistance (TMR=(R_A - R_P)/ R_A) is investigated between 30 K and 300 K for as deposited and annealed junctions with the structure of Ta(5)/Cu(10)/Ta(5)/NiFe(2)/Cu(5)/IrMn(10)/CoFe(2.5)/Al-O/CoFe(2.5)/NiFe(t)/Ta(5), where t = 10 and 100 nm. MTJ's were prepared on thermally oxidized Si wafers using DC magnetron sputtering with ultra clean Ar(9N) as the process gas, in a chamber with base pressure of 4×10^{-9} hPa [1]. The samples were annealed in vacuum (10^{-6} hPa) at 200° C, 270° C and 300° C for 1 hour under a magnetic field of 80 kA/m, followed by field cooling. The junction magnetoresistance decreased for annealed samples at 270° C and 300° C (where maximum of TMR is observed) and increased for as deposited and annealed at 200° C with increasing temperature (Fig.1). The experimental results of TMR of the junction with t = 100 nm are successfully described by a model that includes electron polarization P that decreases with T due to thermally excited spin waves according to $P \propto (1-\alpha T^{3/2})$ [2], Fig.2. From Julliere's model it can be obtained that difference of parallel and antiparallel conductance is proportional to the electron spin polarizations of ferromagnetic electrodes $\Delta G = G_P - G_A \propto P_1 P_2$. ## References - [1] M. Tsunoda, K. Nishigawa, S. Ogata and M. Takahashi, Appl. Phys. Lett. 80 (2002) 3135. - [2] C.H. Shang, J. Nowak, R. Jansen, J.S. Moodera, Phys. Rev. B 58 (1998) R2917. Department of Electronics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, POLAND ² Department of Materials Engineering, Chungnam National University, 305-764 Daejon, KOREA ^{*}Corresponding author: e-mail: stobieck@agh.edu.pl, Phone: +48 12 6172596, Fax: +48 12 6173550