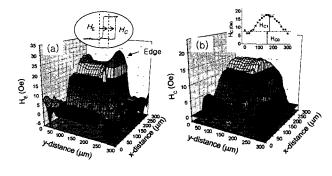
Distribution of interlayer-exchange coupling on MTJ multilayer


CheolGi Kim¹, V.K.Sankaranarayanan², C.O.Kim², M. Tsunoda³, M. Takahashi³

- Department of Materials Science and Engineering, Chungnam National University, 220 Gung-Dong, Yu-Seong Gu, Daejeon, 305-764, Korea
- ² Research Center for Advanced Magnetic Materials, Chungnam National University, 220 Gung-Dong, Yu-Seong Gu, Daejeon, 305-764, Korea
- ³ Department of Electronic Engineering, Tohoku University, Sendai 980-8579, Japan

Corresponding author: e-mail: cgkim@cnu.ac.kr, Phone: +82 42 821 6229, Fax: +42 822 6272

Ever since the discovery of spin valve structure consisting of ferromagnetic free-FM/spacer metal or insulator/ferromagnetic pinned-FM/antiferromagnetic (AF) multilayer there has been renewed interest in the investigation of exchange coupling due to its role on magnetoresistance response in external field. In this work, the local M-H loops have been measured on the free layer of a magnetic tunneling junction (MTJ) with the structure of Ta(50Å)/Cu(100Å)/Ta(50Å)/NiFe(20Å)/ Cu(50Å)/Mn₇₅Ir₂₅(100Å)/Co₇₀Fe₃₀(25Å)/Co₇₀Fe₃₀(25Å)/Ta(50Å) using the magneto-optical Kerr effect (MOKE) system, with 2 μ m spatial resolution, to investigate the mechanism of exchange bias field (H_E) and coercivity (H_C) on free layer. Two-dimensional plots of H_E and H_C show symmetric saddle shapes with their axes aligned with the pinned layer due to the shadow mask effect during deposition, as shown in Fig.1 (a)(b). In general there is a linear relationship between local variations of H_E and H_C measured over the junction, indicating a common factor in the microscopic origin of enhanced H_C and H_E . Based on these results, we propose new model with a dipole interaction for the mechanism of enhanced coercivity associated with morphological corrugations, and measured results have been compared with the calculation on the 2-dimensional distribution of coercivity and exchange coupling field.

Fig. 1. Two-dimensional distribution of (a) exchange bias field $H_{\rm E}$, and (b) coercivity $H_{\rm C}$ in 200°C-annealed sample (x-axis: along free-layer, y-axis: along pinned layer directions). In the inset of (a) MOKE hysteresis loop for the place located at the center of junction. In the inset of (b), the variation of $H_{\rm C}$, where

 H_{C0} and H_{C1} denote the intrinsic and enhanced components of coercivity, respectively.