Site occupancy and anisotropy distribution of Al substituted Ba-ferrite with high coercivity

Dong Hyeok Choi, Sung Yong An, Sang Won Lee, In-Bo Shim, and Chul Sung Kim*

Department of Physics, Kookmin University, Seoul 136-702, Korea

*Corresponding author: e-mail: cskim@phys.kookmin.ac.kr, Phone: +82 2 910 4752, Fax: +82 2 910 4728

M-type barium hexagonal ferrite has been intensively investigated as a material for permanent magnets, high-density recording media, and microwave device. Recently, most of the research has emphasized the modification of magnetic properties by the substitution of Fe³⁺, such as Co²⁺-Ti⁴⁺, Co²⁺-Sn⁴⁺, Cr³⁺, Mn³⁺ and Al³⁺. Especially, when the substituted Al³⁺, changes of structural and magnetic properties is very enlarged. In this study, the site occupancy and anisotropy distribution of Al substituted BaFe_{12-x}Al_xO₁₉ (0.0 \leq x \leq 4.0) have been studied with Mössbauer spectroscopy, x-ray diffraction, and vibrating sample magnetometry. Nanocrystalline BaFe_{12-x}Al_xO₁₉ (0.0 \leq x \leq 4.0) powders were fabricated by the sol-gel

method. The result of XRD measurement shows that the lattice a and c parameters are decreased with increasing x from $a = 5.901 \,\text{Å}$ and $c = 23.243 \,\text{Å}$ for x = 0.0, to a = 5.818 Å and c = 22.754 Å for x = 4.0. With increasing x, the saturation magnetization, M_S decreased linearly but the coercivity, H_c greatly increased up to x = 2.0, and then slightly decreased over x = 2.0. Mössbauer spectra obviously changes with Al doping with a decrease in intensity from the $4f_1+2a$ and 12k sites. As can be seen, the linewidths broaden, especially for the $4f_1+2a$ sites, and the relative area for the 12k site gets larger as x increases. It can be seen that Al³⁺ ions have a strong preference for the $4f_1+2a$ sites. However, when x > 2.0 the $4f_1+2a$ sites are only slightly involved in the substitution.

References

- C. S. Kim, S. W. Lee, S. Y. An, and I. B. Shim, Phys. Stat. Sol. (a), 189, 903 (2002).
- [2] S. Diaz, J. L. Sanchez, F. Leccabue, B. E. Watts, G. Bocelli, and G. Albanese, J. Phys. IV France 7, C1-331 (1997).

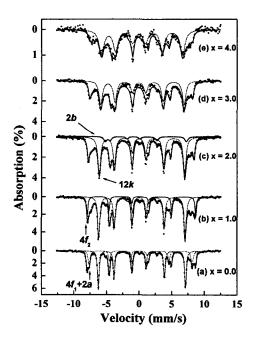


Fig. 1. Mössbauer spectra of $BaFe_{12-x}Al_xO_{19}$ for x=0.0 to x=4.0 at room temperature. Solid circles are experimental data. Solid lines are fits according to models described in the text.