Co-existence of Two Structural Phases in Equilibrium in La₁ _xSr_xMnO₃ at x=0.1-0.4

Woojin Kim, Hajung Song and Soon-ju Kwon*

Department of Materials Science and Engineering, Pohang University of Science and Technology, Hyoja-Dong, Pohang, Kyoungbuk, 790-784, Korea

*Corresponding author: e-mail: soonju@postech.ac.kr, Phone: +82-54-279-2137, Fax: +82-54-279-2399

Colossal magneto-resistive La_{1-x}Sr_xMnO₃ (LSMO) has drawn scientific interest because of its complex phases at x=0.1-0.4, which is not clearly resolved yet. This paper examines the phases at the composition range using neutron powder diffraction and transmission electron microscopy (TEM). The terminal phase at x<0.1 is orthorhombic (Pnma). In the sample of x=0.1, however, Rietveld analysis [1] of neutron powder diffraction detects rhombohedral phase ($R\bar{3}C$, 4%) in the orthorhombic (Pnma, 96%) matrix. The rhombohedral phase increases to 56% at x=0.18 and 100% at x> 0.3. Selected area diffraction (SAD) of TEM also confirms the existence of two phases. The results indicate that the two phases of LSMO are in equilibrium in a wide composition range of about x=0.1-0.25.

References

[1] R. A. Young, The Rietveld Method, (Oxford University Press, Oxford, 1993)