## Preparation and Characteristics of a Magnetic-Dielectric (F<sub>3</sub>O<sub>4</sub>/BaTiO<sub>3</sub>) Composite by Ferrite Plating with Ultrasound Irradiation

H. K. Park<sup>1</sup>, S. H. Choi<sup>1</sup>, J. H. Oh<sup>1</sup>, and T. Ko<sup>1</sup>

There has been a great of interest on magnetic composites. Recently, magnetic composites have been reported in the ferrite-forsterite and ferrite-cordierite systems, which exhibit considerable changes in properties [1, 2]. However, such composites require usually high temperature for crystallization of ferrite. Ferrite plating with ultrasound irradiation enables formation of ferrite films directly on substrates of various shapes at low temperatures ( $60\sim100\,^{\circ}$ C).

Fe<sub>3</sub>O<sub>4</sub>-encapsulation was performed on BaTiO<sub>3</sub> powder with grain size of 500 nm using ultrasound enhanced ferrite plating to prepare a magnetic-dielectric composite powder. The effect of the plating conditions on the formation of Fe<sub>3</sub>O<sub>4</sub> was investigated and the optimum plating conditions were determined [3]. The Fe<sub>3</sub>O<sub>4</sub>/BaTiO<sub>3</sub> composite powder exhibited Fe<sub>3</sub>O<sub>4</sub> grains deposited densely on the surface of the BaTiO<sub>3</sub> powder.

In this study, comparative microwave absorbing measurements was performed on Fe<sub>3</sub>O<sub>4</sub>, Fe<sub>3</sub>O<sub>4</sub>/BaTiO<sub>3</sub> mixed, synthesized Fe<sub>3</sub>O<sub>4</sub>/BaTiO<sub>3</sub> composite and BaTiO<sub>3</sub> specimens, The results showed that the matching frequency of those specimens of the same thickness shifted to higher frequency in sequence, compared to that of the BaTiO<sub>3</sub> one. In sintered Fe<sub>3</sub>O<sub>4</sub>/BaTiO<sub>3</sub> composite powder, the nanosized coated Fe<sub>3</sub>O<sub>4</sub> grains helped a low temperature sintering of Fe<sub>3</sub>O<sub>4</sub>/BaTiO<sub>3</sub> composite at a much lower temperature, compared to the sintering temperature of the pure BaTiO<sub>3</sub>, The sintered Fe<sub>3</sub>O<sub>4</sub>/BaTiO<sub>3</sub> composite revealed a large magneto-electric properties, simultaneously.

This work was supported by Korea Research Foundation Grant (KRF-2001-005-E20008).

## References

- [1] H. Y. Luo, Z. X. Yue, J. Zhou, J. Magn. Magn. Mater. 210, 104 (2000).
- [2] Z. Yue, L. Li, J. Zhou, H. Zhang, Z. Ma, Z. Gui, Mater. Lett. 44, 279 (2000).
- [3] S. H. Choi, J. H. Oh, T. Ko, J. Magn. Magn. Mater. in press (2003).

<sup>&</sup>lt;sup>1</sup> Department of Materials Science and Engineering, Inha University, Inchon 402-751, Korea

<sup>\*</sup>Corresponding author: e-mail: jaeheeoh@inha.ac.kr, Phone: +82 32 860 7524, Fax: +82 32 866 0131