1099, Bq-15

XRD and EPR studies of La-deficient La_{0.54}Ca_{0.32}MnO_{3-δ}

P.H. Quang^{1,2}, H.T. Nhan¹, A.N. Ulyanov¹, N.H. Sinh², S.C. Yu*, 1

¹ Department of Physics, Chungbuk National University, Cheongju 361-763, South Korea

From our previous work [1] it is suggested that the La-deficient compound of $La_{0.54}Ca_{0.32}MnO_{3-\delta}$ is a suitable candidate for application as a working substance in magnetic refrigeration. It has the values of 300 K for Curie temperature and 5.5 J/kg K for magnetic-entropy change at the Curie temperature upon at 5 T magnetic field variation. In this work, we have performed X-ray diffraction (XRD) and electron paramagnetic resonance (EPR) measurements in La-deficient sample of $La_{0.54}Ca_{0.32}MnO_{3-\delta}$. From X-ray pattern it is found that the crystal structure of $La_{0.54}Ca_{0.32}MnO_3$ has been distorted by the La-deficiency. Above Curie temperature T_C , the EPR signal shows a single line which has a Lorentzian line shape with g=2, independent of T. The temperature dependences of EPR line intensity I(T) and line-width $\Delta H_{pp}(T)$ are compared with those of the $La_{0.67}Ca_{0.33}MnO_3$. A deviation of I(T) from Curie-Weiss law has been also observed near T_C . The best fit of I(T) curve using the exponential law yields a value of activation energy $E_a=0.22$ eV. For T>1.1 T_C , $\Delta H_{pp}(T)$ increases linearly with T with a high value of slope b=5.48 Oe/K. This feature is likely a result of the larger lattice distortion in this compound.

References

[1] N.H. Sinh, N.P. Thuy, J. Magn. Magn. Mater. 262 (2003) 502.

² Cryogenics Laboratory, Faculty of Physics, College of Natural Science, Hanoi University, 334 Nguyen Trai Road, Thanh xuan, Hanoi, Vietnam

^{*}Corresponding author: e-mail: scyu@chungbuk.ac.kr, Phone: +82 43 261 2269, Fax: +82 43 275 6416