## Analytical modelling of μ and ε-isotropy effects in superlattices

## E.G. Starodubtsev

Department of Automation and Information Systems, Gomel State Technical University, 48 October av., 246746 Gomel, Belarus

e-mail: starodub@tut.by, Phone+375-232-400027, Fax: +375-232-479165

Monocrystal anisotropic and bianisotropic media can be characterized by magnetic permeability  $(\mu)$  or dielectric permittivity  $(\epsilon)$  tensors with coincident for a definite light frequency principal values. In this case we have effects of magnetic (dielectric) isotropy of a medium, which are used at development of various devices for controlling spectral and amplitude electromagnetic waves characteristics and at disclosure and investigation of new optical phenomena. At presence of  $\mu$   $(\epsilon)$  – isotropy many delicate crystal optics effects become apparent most strongly, as their masking by the medium magnetic (dielectric) anisotropy disappears.

Effects of  $\mu$  ( $\epsilon$ ) – isotropy in monocrystals are rather rare, as the corresponding conditions for tensors  $\mu$ ,  $\epsilon$  components are very rigid and determined only by the nature of a crystal. There are more possibilities of  $\mu$  ( $\epsilon$ ) – isotropy effects realization for layered-periodic structures or superlattices (SL), as the layers properties and geometry varying allows operating effective magnetic and dielectric SL properties (a particular case of  $\epsilon$  – isotropic SL from uniaxial components was considered in [1]).

The work aims at investigation of  $\mu$  ( $\epsilon$ ) – isotropy general conditions for short-period layered-periodic structures or SL. Analytical and numerical modelling of SL effective tensors  $\mu$ ,  $\epsilon$  are carried out in frames of the long wavelength approximation for electromagnetic field. SL originated from arbitrary crystallographic symmetry components characterized both by symmetric, and non-symmetric tensors  $\mu$ ,  $\epsilon$  are considered. Particularly, it is shown that in case of two-component SL  $\mu$  ( $\epsilon$ ) – isotropy general conditions represent a system of two equations (of the firth and the sixth order) relatively to parameter  $x=d_1/D$ , where  $d_1$  is the first layer thickness,  $D=d_1+d_2$  is the SL period. According to the numerical and graphical analysis, there is a rather wide diapason of the SL properties (effective tensors  $\mu$ ,  $\epsilon$  components and parameter x values) when the considered effect can take place.

The following possible applications of  $\mu$  ( $\epsilon$ ) – isotropic SL are investigated:

- i) devices with controlled electromagnetic waves transmission which can be selective on frequency;
- ii) active elements of wide aperture light shutters;
- iii) regimes of dynamic "switching on switching off" the effective medium magnetic (dielectric) anisotropy at external controlling effects (at linear Faraday's effect or electro-optic effects).

## References

[1] I. V. Semchenko, Kristallografiya 35, 3, pp. 1047-1050 (in Russian).