1287, Ba-3 ## Crossroads electronic structure of MnS, MnSe, and MnTe* S. J. Youn¹, B. I. Min², and A. J. Freeman³ Using the LDA+U method, we have investigated the electronic structures of MnB^{VI} (B^{VI}=S,Se,Te) which are end-point materials for wide gap semiconductors, A^{II}_{1-x}Mn_xB^{VI}(A^{II}=Zn,Cd,Hg) using parameters calculated by the so called solid atom method. All these MnB^{VI} compounds have semiconducting electronic structures in the antiferromagnetic phase. The character of each energy gap is on the crossroads between charge transfer type insulators and band insulators. The LDA+U method yields enhanced energy gaps and magnetic moments, as compared to those of the LDA method in agreement with experimental values. Based on the LDA+U total energy results, we have identified the character of peaks observed in photoemission experiments, and have derived an understanding of the tendency of Neel temperatures in MnB^{VI} to increase with anionic atomic number. ¹ Department of Physics Education, Gyeongsang National University, Jinju 660-701, Korea, ² Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea, ³ Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208-3112, USA. ^{*}Supported by KOSEF and by the U.S. N.S.F.