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This article discusses a diagnostics method based on models, and information theory. From an extensive system
dynamics bond graph model of a gearbox [1], simulated were various cases germane to this diagnostics approach,
including the response of an ideal gearbox, which functions perfectly to designer’s specifications, and degraded
gearboxes with tooth root cracking. By comparing these cases and constructing a signal flow analogy between the
gearbox and a communication channel, Shannon’s information theory [2], including theorems, was applied to the

gearbox to assess system health, in terms of ability to function.
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1. INTRODUCTION

Maintenance costs of machines can accrue to purchase
prices within a year of operation; downtime losses can far
exceed this in minutes [3]. Small reductions in life-cycle
maintenance costs can yield substantial savings. Critical are
effective machine diagnostic and prognostic methods [4]. To
achieve these aims, a fault diagnosis method was developed
to predict system condition and identify components about to
fail. This method constructs detailed models of a machine,
tunes model parameters from machine data, infers from these
models the condition of components in the machine, and
applies Shannon's information theory to assess machine
health in terms of functional capability.

2. SHANNON’S INFORMATION THEOREM

We construct an analogy between a gearbox and a
communications channel, to diagnose severity of faults by
assessing how faults impede flow of information of signals
through the machine. To appraise information flow, we treat a
machine as a communications channel, Fig. 1, wherein input
signal x(f) containing information is “transmitted” and
“received” as output y(z) over a “machine channel” [5].
Faults add “noise”, “...any unwanted component in a
received signal [6]", tantamount to the difference y(1)-y(7)
between actual received signal y(r) and the signal y(r)
received if the machine had no faults. Output (), is x(Z)
altered by channel dynamics, but with noise n(r) added.
Powerful theorems of Shannon [2], appraise (1) the channel
capacity C, the maximum rate information (in bits per
second) can be successfully sent over a channel of bandwidth
w and signal to noise (power spectra) ratio S/N; and (2) the
average rate of information R that must be sent for a given
message. Here C characterizes the machine channel’s
condition, and R characterizes the load on the channel. If
R C, the information will be received intact, otherwise not. If
a communications design obeys this, it works; otherwise, not

[2].
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Fig. 1 Shannon-Weaver model [2]

3. DIAGNOSTIC METHOD FOR A GEARBOX
3.1 Construction of detailed gearbox model
Important to this method are models which describe the
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machine’s behavior, including functional condition. To
test/diagnose a system, there should exist a direct
correspondence between elements of the model and
components/items in the physical system. The gearbox bond
graph model of Fig. 3, based on [1] and [7], models the Fig. 2
apparatus of Dalpiaz [8].

The gearing system is composed of two identical single
stage gear units and two shafts (Fig. 2). Contained in the
systems model are physics of a gear system, including tooth-
to-tooth contact for spur gears [1], tooth bending (stiffness
and inertia), Hertzian contact stiffness for teeth, slip and
rolling typical of spur gear contacts, and gear system effects
such as shaft and bearing dynamics among others. The two
cllipses having bond graph structures shown in [1] represent
dynamics of meshing gears.

Each box is mounted to the foundation with compliances
Choxts Cooxr @and dampings Ry .., Ry All Inertance elements
are rotational mass moments of inertia associated with shafts
(Ipis L, and 1)), gears (I, Ly, Ly, and I z) or the gearbox
housing (I, and I,..). Likewise, all compliances are
torsional compliances of shafts (C,, C,,, C, and C,,, and
C,,,) and gearbox housing, and dampings (Ry,,, Ry, Ry, and
R,.,) from bearings. The power bonds extending from the
middle of the left and right sides of the 1-junction in the
gearbox housings and foundation section form triangular
structures which model the reaction torques applied to the
boxes by the shafts, bearings, and gears [9].

3.2 Tuning the parameters of gearbox model

Experimental results by Dalpiaz, e al. [10] are compared
with results from the bond graph model in Fig. 3 to tune the
model’s parameters. Tuning parameters from data permits
complete monitoring of the dynamic system. As a fault
progresses, measured signals change, and for simulations to
match measurements, parameters in the model must change.
Only by changing certain parameters in the model, can the
complex signals measured by the sensors be reproduced by
the models. By tuning a model, and then following the
progressive changes of parameters, faults can be sensed and
tracked since parameters have direct correspondence with
specific components (and faults).

Fig. 4 shows tuning of a parameter. If a crack appears in
the root of a gear tooth, the compliance of that tooth must
increase. The initial compliance can be analytically estimated
from design data, by assuming a gear tooth as a tapered
cantilever beam, or from sensor data, such as the Fig. 4 (a)
power spectra. Fig. 4 (b) through (d) show power spectral
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densities corresponding to increased tooth compliance. As e Tunes system parameters from data and tracks changes
compliance increases, sidebands in the power spectral density of parameter(s)
increase in number and amplitude. In current diagnostic e Assesses severity of faults and predicts condition, using
practice, increases in number and amplitude of such Shannon’s information theory
sidebands may indicate a fault condition [10], including a
cracked tooth. Fig. 4 (e) and (f) from [10], show power 5. ACKNOWLEDGEMENTS
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To summarize, our method

o Models the system

e Measures response, with common sensors (most likely
vibration)
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