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The nervous system consists of two types of cells, which are neurons and
glial cells. Among the glial cells, oligodendrodendrocytes and schwann cells form
myelin sheaths in the central nervous system (CNS) and the peripheral nervous
system (PNS), respectively. The major function of myelin in vertebrates is to
insulate axons and help action potential travel faster. Another important function
of myelin is to support axonal function and integrity. In some neuronal diseases,
such as multiple sclerosis that is a representative demyelinating disease, myelin
sheaths are degenerated. In addition, oligodendrocytes contains several
components that inhibit axonal regeneration in the CNS. This seems to be why
axonal regeneration is extremely limited in the CNS. Here I will breifly describe
some of the current research areas on oligodendricytes and then discuss in
detail with a specific study regarding the effect of an axonally-derived signal on
the development of oligodendrocytes.

I. The recent trend in the study of oligodendrocyte
1) The genesis of oligodendrocytes
~ signaling molecules or signal transducers
: PDGF-aa, basic FGF, neuregulin, sonic hedgehog, olig-1, olig-2,
nkx6.1, pax6

2) The mechanisms of axion-glia interactions
. cell-cell adhesion molecules, axonally-derived factors

3) The inhibitory effects of oligodendrocytes on axonal regeneration
: Nogo (A, B, and C), myelin associated glycoprotein (MAG), etc.
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4) The injury agents that cause demyelination
: pro-inflammatory cytokines, viruses, auto-antibodies,

lipopolysaccharide, glutamate
[I. Culture systems to study oligodendrocyte development or injury

1) Pure oligodendrocytes

2) Mixed glial cultures

3) Spinal cord explant culture

4) Brain slice culture

5) Retinal ganglion cell culture
etc.

III. The erbB2 gene required for the development of terminally
differerntiated spinal cord oligodendrocytes

1. Abstract

Development of oligodendrocytes and the generation of myelin internodes
within the spinal cord depends on regional signals derived from the notochord
and axonally derived signals. Neuregulin (NRG)-1, localized in the floor plate as
well as in motor and senscry neurons, is necessary for normal oligodendrocyte
development. Oligodendrocytes respond to NRGs by activating members of the
erbB receptor tyrosine kinase family. Here, we show that erbB2 is not necessary
for the early stages of oligodendrocyte precursor development, but is essential
for proligodendroblasts to differentiate into galactosylcerebroside-positive (GalC+)
oligodendrocytes. In the presence of erbB2, oligodendrocyte development is
normal. In the absence of erbB2 (erbB2-/-), however, oligodendrocyte
development is halted at the proligodendroblast stage with a >10-fold reduction
in the number of GalC+ oligodendrocytes. ErbB2 appears to function in the
transition of proligodendroblast to oligodendrocyte by transducing a terminal
differentiation signal, since there is no evidence of increased oligodendrocyte
death in the absence of erbB2. Furthermore, known survival signals for
oligodendrocytes increase oligodendrocyte numbers in the presence of erbB2, but
fail to do so in the absence of erbB2. Of the erbB2-/- oligodendrocytes that do
differentiate, all fail to ensheath neurites, These data suggest that erbB2 is
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required for the terminal differentiation of oligodendrocytes and for development

of myelin.
2. Introduction

Development of oligodendrocytes capable of forming myelin internodes
requires several distinct environmental cues. These include early, regional, and
later axonally derived signals. The initial specification of spinal cord
oligodendrocyte precursor cells (OPCs) is dependent on signals from ventral
structures, such as the notochord and floor plate. One critical signaling molecule
in early OPC specification appears to be Sonic hedgehog derived from floor plate
and notochord, which induces the basic helix-loop-helix molecules olg-1 and
olg-2 (Lu et al, 2000; Zhou et al, 2000). After their initial appearance in the
ventral ventricular zone (Noll and Miller, 1993; Timsit et al, 1995), OPCs
migrate widely throughout the neuraxis, mature through antigenically and
morphologically distinct stages, and ultimately form myelin internodes. An early
stage of OPC is an mAb AZB5 immunoreactive, bipolar, motile cell with a
mitogenic response to PGDF-AA and bFGF. These AZB5+ cells mature into
proligodendroblasts, less-motile cells (characterized by surface labeling with the
04 mAb, but not antigalactosylcerebroside antibodies), and a fine arbor of
processes. Proligodendroblasts proliferate in response to a different spectrum of
mitogens from AZB5+/04- cells. Differentiation of proligodendroblasts is
accompanied by exit from the cell cycle and acquisition of galactosylcerebroside
expression, identified by mAb Ol. Before axonal ensheathment and myelination,
oligodendrocytes mature and express myelin genes such as myelin basic protein
(MBP). Maturing oligodendrocytes undergo progressive remodeling of their
process arbor during a dramatic but poorly understood metamorphosis from
premyelinating to myelinating cells. The multiple distinct steps in
oligodendrocyte and myelin formation are regulated by distinct signaling
systems. Although some of these signaling systems are beginning to be
understood, control of the later stages in myelin formation is still poorly
understood.

Axonally derived signals appear to be required for several aspects of
oligodendrocyte and myelin formation {(for review see Barres and Raff, 1999).
One potential axonally derived signaling molecule critical for oligodendrocyte and
myelin formation is neuregulin (NRG)-1 (for review see Carraway and Burden,
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1995; Pinkas-Kramarski et al, 1998; Riese and Stern, 1998, Adlkofer and Lai,
2000). In spinal cord explants bearing a loss-of-function mutation in the NRG-1
gene, O4+ proligodendroblasts completely fail to develop (Vartanian et al, 1999).
This early defect in oligodendrocyte development in NRG-1 mutants can be
reversed by the addition of recombinant NRG. Consistent with a role for NRGs
during early development of the oligodendrocyte lineage, early ventral structures
such as the ventral ventricular zone and floor plate of the spinal cord (Vartanian
et al, 1999) and the subventricular zone of the forebrain (Vartanian et al, 1994;
Corfas et al,, 1995) express NRG at the time that OPCs initially arise.

Multiple factors dictate the cellular effects of NRG. These include the specific
ligand, levels and repertoire of receptor expression, and the cellular context. The
large number of NRG ligands arise from four known genes with multiple splice
and promoter variants (for review see Fischbach and Rosen, 1997; Adikofer and
Lai, 2000). Signal transduction through erbB receptors occurs as the consequence
of essential ligand-induced receptor dimerizations. For example, erbB2 lacks a
binding site for NRG, whereas erbB3 lacks intrinsic tyrosine kinase activity, and
neither can transduce NRG signals in isolation. By contrast, erbB4 is both
capable of binding ligand and possesses an intact tyrosine kinase domain.
Although erbB3 or erbB4 -will bind ligand alone, heterodimerization with erbB2
increases the affinity of the receptor complex for its ligand 14-fold. ErbB2
appears to be the preferred receptor partner in most, if not all, erbB
heterodimers, and it increases the complexity of signal transduction after NRG
stimulation (Pinkas-Kramarski et al, 1997, Riese and Stern, 1998; Yarden and
Sliwkowski, 2001). Furthermore, unique and overlapping docking sites for adapter
proteins and cytosolic enzymes exist for individual erbBs, making them capable
of transducing both common and distinct signals (Plowman et al,, 1993; Wang et
al,, 1998a; Jones et al, 1999).

Here we examine the requirement for erbB2 signaling during development of
the spinal cord oligodendrocyte lineage. Through a targeted disruption of the
murine erbB2 gene, we demonstrate that, in striking contrast to the absence of
NRG-1, the absence of erbB2 has no effect on the formation of the early
oligodendrocyte lineage. However, ErbB2 does appear to be essential for normal
development of later stages of the oligodendrocyte lineage. In the absence of
erbB2, the development of differentiated Ol+ oligodendrocytes was dramatically
deficient. In addition, the limited Ol+ oligodendrocytes that develop in the
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absence of erbB2 signaling failed to ensheath neurites and form myelin in

long-term cultures.
3. Results

Figure 1. Targeted disruption of the A
murine erbB2 gene.
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oligodendrocytes express the NRG
receptors erbB2, erbB3, and erbB4.

(A) RT-PCR of erbB2 (B2), erbB3 (B3),
and erbB4 (B4) fragments from

erbB2

erbB3

immunopanned OPC and oligodendrocyte
total RNA.

(B) Immunostaining of OPCs and
oligodendrocytes for erbB2, erbB3, and
erbB4.
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Figure 3. Severe loss of Ol+ oligodendrocytes
in the absence of erbB2. (A) Development of
04+ oligodendrocytes is normal in the
presence of erbB2 (erbB2+/-), as well as in
its absence (erbB2-/-). The absence of erbB2
results in  a severe loss of Ol
oligodendrocytes. (B) Quantitative analysis of
explant data reveals a >10-fold reduction in
the number of Ol+ oligodendrocytes in the
absence of erbB2 compared with erbB2+/~ and
erbB2+/+ explants. (C) Quantitative analysis

of MBP+ oligodendrocytes.
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Figure 5. Lack of erbB2
signaling does not result in A

increased cell death of
OPCs or oligodendrocytes
in spinal cord explants.
Spinal cord explants from
erbB2-/-, erbB2+/-, and
erbB2+/+  E95
embryos were cultured for
9 days and double-labeled
with propidium iodide, and
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Figure 6. Ligands that transduce survival signals to oligodendrocytes through
distinct transmembrane receptors do not rescue the erbB2-/- phenotype. (A)
PDGF-AA does not rescue GalC+ oligodendrocytes in erbBZ loss-of-function
mutants. (B) LIF does not rescue the GalC+ oligodendrocytes in the erbB2

loss-of-function mutants.
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Figure 7. Low-density cultures from
erbB2-/- explants have significantly
decreased of 01+
oligodendrocytes compared with cells
erbB2.  There
significant reduction in the number
of Ol+ oligodendrocytes in the
absence of erbB2.
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Figure 8. Deficient axonal ensheathment in erbB2 loss-of-function

Quantitation of the number of
myelin internodes per explant
from erbB2+/+, erbB2+/-
erbB2-/- mice. In the presence of
erbB2,
internodes are identified, whereas

and
myelin

numerous

in the absence of erbBZ, none
were observed.
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4. Conclusions
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- NRG-mediated signals transduced through diverse erbB receptors are

required for distinct stages in oligodendrocyte development.

~ Axonally derived signals are necessary for oligodendrocyte development

and myelination.

- NRG is a candidate axonal signal for oligodendrocyte formation and
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