Low-Frequency Noise Properties in Single Layer thin Film High-T_c SQUID Gradiometers Tae jong Hwang^{ab}, In-Seon Kim^a, D. H. Kim^b, Yong Ki Park^a **Korea Research Institute of Standards and Science, Korea **b Yeungnam Unversity, Korea** We have investigated the low-frequency noise in high-critical-temperature (high T_c) direct-coupled superconducting quantum interference device (SQUID) first order gradiometer in static magnetic field. We designed and fabricated gradiometers having 50 μ m flux dams across the grain boundary in order to suppress the vortex motion in pick-up loops; slot, parallel loops (PL) type. The out-size of pick up coil is 38×38 mm. The baseline of the SQUID gradiometer is 5 mm. Each of the fabricated gradiometer was mounted on a carrier, together with a small modulation/feedback coil. The Dewar and a Helmholz coil were placed in magnetic shielding room. For noise measurements, it was connected to a NKT DC SQUID MASTER SE105C and a spectrum analyzer. After cooling devices in zero magnetic field (ZFC), we applied a magnetic field and increased from 0.3 μ T up to 12 μ T.