Fabrication of MgB₂ Thin Films by rf Sputtering

Jong Rok Ahn^a, Yunseok Hwang^b, Soon-Gul Lee^a

^a Korea University, Jochiwon, Chungnam, Korea

^b Korea Research Institute of Standards and Science, Taejon, Korea

We have studied fabrication of MgB_2 thin film on $SrTiO_3$ (001) and r-cut Al_2O_3 substrates by rf magnetron sputtering method using an MgB_2 single target and two targets of Mg and B, respectively. Based on P-T phase diagram of MgB_2 and vapor pressure curves of Mg and B, a three-step process was employed. B layer was deposited at the bottom to enhance the film adhesion to the substrate. Secondly, co-sputtering of Mg and B was done. Finally, Mg was sputtered on top to compensate for the loss of Mg during annealing. Subsequently, MgB_2 films were *in-situ* annealed in various conditions. The sample fabricated using the three-step process showed T_c of 24 K and formation of superconducting MgB_2 phase was confirmed by XRD spectra. In case of co-sputtering deposition, T_c depended on annealing time and argon pressure. However, those made by single-target sputtering showed non-superconducting behavior or low transition temperature, at best.

keywords: MgB2 thin film, rf sputtering