A Brief Introduction to DNA microarrays Data Analysis

Seyeon Weon sywon@bioinformatics.pe.kr Bioinformatics Research Laboratories, Co.

- Many of the slides are from Terry Speed, Department of Statistics, UC Berkeley
- And some slides adopted from Prabhakar Raghavan, Department of Computer Science, Stanford
- Also, some from Russ Altman, Biomedical Informatics, Stanford.

Steps in Images Processing

- 1. Addressing: locate centers
- 2. Segmentation: classification of pixels either as signal or background (using seeded region growing).
- 3. Information extraction: for each spot of the array, calculates signal intensity pairs, background and quality measures.

KO #8

Probes ~6,000 cDNAs, including 200 related to lipid metabolism. Arranged in a 4x4 array of 19x21 sub-arrays called pin-groups.

Draw the lowess curve within print-tip group

- $M = \log(R/G)$

Which genes are (relatively) up/down regulated?

Samples liver tissue from each of two kinds of mice, e.g. KO vs. WT, or mutant vs. WT

× n T Ž

 For each gene form the t statistic: average of n trt Ms sqrt(1/n (SD of n trt Ms)²)

Which genes are (relatively) up/down regulated?

: as before, but also pooled control (reference) liver tissue

 For each gene form the t statistic: <u>average of n trt Ms - average of n ctl Ms</u> sqrt(1/n (SD of n trt Ms)² + (SD of n ctl Ms)²)

Many comparisons of interest

- **Liver tissue from mice treated by cholesterol modifying drugs.**
- Question 1: Find genes that respond differently between the treatment and the control.
- Question 2^r Find genes that respond similarly across two or more treatments relative to control.

The olfactory bulb experiments

A M V D P

tissues from different regions of the olfactory bulb.

Question 1 differences between different regions.

Question 2 identify genes with pre-specified patterns across regions.

Interaction?

(30 minutes, 1 hour, 4 hours, 24 hours)

Question: Which genes contribute to the enhanced inhibitory effect of OSM when it is combined with EGF? Role of time?

cti OSM

 \times 4 times

EGF OSM & EGF

Gene expression data from cDNA microarrays

Data on *p* genes (typically 1000s) for *n* samples; always ratios

	21100		the Monath of					
		!	sample!	sample/	sample?	sample t	sampin*	
	•	1	0.46	0.30	0.80	1.51	0.90	
	.'	,	-0.10	0.49	0.24	0.06	0.46	
-Jenes	3	;	0.15	0.74	0.04	0.10	0.20	
	4	1	-0.45	-1.03	-0.79	-0.56	-0.32	
	- 5	i	-0.06	1.06	1.35	1.09	-1.09	

Gene expression level of gene i in mRNA sample j

= Log(Red intensity /)

Analyzing the Data

- Unsupervised Learning
- Supervised Learning

Cosine similarity

Cosine similarity of D_j, D_k :

$$sim(D_j, D_k) = \sum_{i=1}^{m} w_{ij} \times w_{ik}$$

Aka normalized inner product.

Supervised vs. unsupervised learning

- Unsupervised learning:
 - Infer structure implicit in the data, without prior training.
- Supervised learning:
 - Train system to recognize classes
 - Decide whether or not new data belong to the class(es) trained on

Hierarchical clustering

k-Means Clustering

- At the start of the iteration, we have **k** centroids.
- Each data point assigned to the nearest centroid.
- All points assigned to the same centroid are averaged to compute a new centroid;
 - thus have **k** new centroids.
- Repeat above

Self Organizing Maps(SOM)

k-Nearest Neighbor Classification

- For a given data point, find out **k**-closest data points in the training set.
- If more than **p** percent of above data points belong to a class, the data point is assigned to the class.

Support Vector Machine(SVM)

Bayesian Classification

- Assume all expression measurements for a gene are independent.
- P(f|group 1) = p(f1&f2...fn|group1) =
 p(f1|group1) * p(f2|group1)...* p(fn|group1)
- Can just multiply these probabilities (or add their logs), which are easy to compute, by counting up frequencies in the set of "known" members of group 1.
- Choose a cutoff probability for saying "Group 1 member."

