Proceedings of Joint Conference of Korean Data And Information Science Society and Korean Data Analysis Society, June 21-22, 2002, pp. 35-50

*

³621-749, 607, ⁴156-720 460-18,

⁵ 156-720 460-18,

77(likelihood function), $\pi(a \mid data)$ a.(Berger, 1985).

$$a Y_t (3)$$

가 .

$$Y_t | a, g, \Sigma_s \sim N(ga, \Sigma_s), \quad t = 1, 2, \cdots, m$$
(3)

$$\Sigma_s$$
 $n \times n$, g n . (3)
Y (4) .

$$Y | a, g, D, \Sigma \sim N(Ga, D + \Sigma), \qquad (4)$$

(generalized least square estimator) .

$$\hat{a}(Y) = (G'V^{-1}G)^{-1}G'V^{-1}Y, \qquad (5)$$

 $V = D + \Sigma$, $\hat{a}(Y)$ (best linear unbiased estimator) . $\hat{a}(Y)$ (6) .

$$\hat{a}(Y)|a \sim N(a,\sigma^2),$$
 (6)

.

$$\sigma^{2} = (G'V^{-1}G)^{-1} \quad V \qquad V^{-1}$$

$$\gamma \quad (spectral decomposition)$$

$$g \qquad 100$$

$$\cdot$$

$$a \qquad 2^{1} \qquad a \qquad 2^{1} \qquad a \qquad 2^{1} \qquad$$

$$\pi(a \mid \widehat{a}) = p(\widehat{a}) N(\mu(a \mid \widehat{a}), \tau^2(a \mid \widehat{a})) + (1 - p(\widehat{a})) N(\mu_A(a \mid \widehat{a}), \tau^2_A(a \mid \widehat{a})),$$
(9)

$$\mu(a \mid \hat{a}) = \frac{\tau^{2}}{\tau^{2} + \sigma^{2}} \hat{a} , \qquad \tau^{2}(a \mid \hat{a}) = \frac{\tau^{2}}{\tau^{2} + \sigma^{2}} \hat{\sigma}^{2} ,$$

$$\mu_{A}(a \mid \hat{a}) = \frac{\tau^{2}_{A}}{\tau^{2}_{A} + \sigma^{2}} \hat{a} + \frac{\sigma^{2}_{A}}{\tau^{2}_{A} + \sigma^{2}} \mu_{A} , \qquad \tau^{2}_{A}(a \mid \hat{a}) = \frac{\tau^{2}_{A}}{\tau^{2}_{A} + \sigma^{2}} ,$$

$$p(\hat{a}) = \left[1 + \left(\frac{1 - p}{p}\right)\sqrt{\frac{\tau^{2} + \sigma^{2}}{\tau^{2}_{A} + \sigma^{2}}} \cdot \exp\left\{\frac{1}{2}\left(\frac{(\hat{a} - \mu_{A})^{2}}{\tau^{2}_{A} + \sigma^{2}} - \frac{\hat{a}^{2}}{\tau^{2} + \sigma^{2}}\right)\right\}\right]^{-1} .$$
(9)
(10)

(11)

$$P(a \in D \mid \hat{a}), \tag{10}$$

$$P(a \in A \mid \hat{a}), \tag{11}$$

	Table 1. Control full and scenario full of OCM						
GCM	scenario run	data generation method					
	control run	constant CO2					
	CO2 forcing	historic CO2 1860-1989, IS92a 1990-2099					
ECUAMA/ODVC2	CO2+SO4 forcing (1)	historic CO2 1860-1989, IS92a 1990-2049					
ECHAM4/OP ICS		historic SO4 1860-1989, IS92a 1990-2049					
	COO + SOA formation (2)	historic CO2 1860-1989, IS92a 1990-2049					
	CO_2+3O_4 forcing (2)	historic SO4 1860-1989, IS92a 1990-2049					

Fig. 1-Fig. 2

NCEP, ECHAM4/OPYC3

. Fig. 1 NCEP

Fig. 1. Regional average of yearly mean temperature of NCEP

Fig. 2. Regional average of yearly mean temperature of ECHAM4/OPYC3

 $\mbox{Fig. 3-Fig. 5} \quad \mbox{ECHAM4/OPYC3} \quad \mbox{CO2} \quad \mbox{7} \mbox{} \mbox{, CO2+SO4 (1)} \quad \mbox{7} \mbox{} \mbox{, CO2+SO4 (2)} \quad \mbox{7} \mbox{} \mbox{}$

. Fig. 3-Fig. 5

71 TON () Est-Asian region () Est-data region () Speria region () Speria region

Fig. 3. Fingerprint of ECHAM4/OPYC3 : CO2 forcing

Fig. 4. Fingerprint of ECHAM4/OPYC3 : CO2+SO4 (1) forcing

Fig. 5. Fingerprint of ECHAM4/OPYC3 : CO2+SO4 (2) forcing

3.					가	
1009 4 1070	1009 (.) 1070	1000 (1) 1000	NCEP	10	71	(a) 1959
- 1998 , (b) 1969 -	1998 , (c) 1979 -	1998 , (d) 1989	- 1998 10	10	71	Fig
2-Fig. 4		フト 20			가	
Fig. 6-Fig. 8 EC	CHAM4/OPYC3 C	O2, CO2+SO4 (I), CO2+SO4	(2) 7	'ŀ	
가		. Fig.	6-Fig. 8			
가 p	p = 0.5	가	가		가	

Fig. 6. Likelihood function, prior distribution, and posterior distribution of *a* using ECHAM4/OPYC3 fingerprint of the East-Asian region. For each of the time periods (a)-(d): (left) the likelihood(solid line) and prior distribution components[anthropogenic CO2 forcing(dashed line); no anthropogenic impacts(dotted line)], and (right) the posterior mixture distribution.

Fig. 7. Likelihood function, prior distribution, and posterior distribution of *a* using ECHAM4/OPYC3 fingerprint of the East-Asian region. For each of the time periods (a)-(d): (left) the likelihood(solid line) and prior distribution components[anthropogenic CO2+SO4 (1) forcing(dashed line); no anthropogenic impacts(dotted line)], and (right) the posterior mixture distribution.

Fig. 8. Likelihood function, prior distribution, and posterior distribution of *a* using ECHAM4/OPYC3 fingerprint of the East-Asian region. For each of the time periods (a)-(d): (left) the likelihood(solid line) and prior distribution components[anthropogenic CO2+SO4 (2) forcing(dashed line); no anthropogenic impacts(dotted line)], and (right) the posterior mixture distribution.

가 1990 (7) , 가 (8) 가 가 Fig. 6-Fig. 7 CO2 CO2 + SO4 (1) , 1969 - 1998 1959 - 1998 , 1979 - 1998 1969 - 1998 , 1989 - 1998 1979 - 1998 . Fig. 8 CO2+SO4 가 CO2+SO4 (1) 가 (2)가 CO₂ 1969 - 1998 1959 - 1998 1979 - 1998 1969 - 1998 , 1989 - 1998 1979 - 1998 Table 2 1959 - 1998 , 1969 - 1998 , 1979 - 1998 , 1989 - 1998 가 â $\sigma^2 = (G'V^{-1}G)^{-1}$ (5) (7) (9) 가 (p = 0.5)가 $(p(\hat{a}))$ Table 2 7 1959 - 1998 , 1969 - 1998 , 1979 - 1998 , 1989 가 가 - 1998 $\mu(a | \hat{a})$

Table 2. For each of the four time periods (a)-(d) of the East-Asian region : GLS \hat{a} of a and associated standard deviation σ ; mean and associated standard deviation of a under the first component (no climate change) of the posterior mixture ; posterior mean and associated standard deviation under the second component(ECHAM4/OPYC3:CO2, CO2+SO4 (1), and CO2+SO4 (2) forcing) of the posterior mixture ; posterior weight, $p(\hat{a})$, assuming prior weight p = 0.5.

scenario	period	â	σ	τ	$\mu_{\scriptscriptstyle A}$	\mathcal{T}_A	$\mu(a \mid \hat{a})$	$\tau(a \mid \hat{a})$	$\mu_A(a \mid \hat{a})$	$\tau_A(a \mid \hat{a})$	$p(\hat{a})$
	1959-98	-0.041127	0.023163	0.012039	0.929901	0.230334	-0.008747	0.010682	-0.031405	0.023047	0.9999
cor	1969-98	0.009891	0.026562	0.017827	0.917029	0.258860	0.003072	0.014802	0.019343	0.026423	0.9997
002	1979-98	-0.005419	0.032694	0.023365	0.924754	0.293915	-0.001832	0.019009	0.005949	0.032493	0.9990
	1989-98	0.000745	0.045497	0.039385	0.929239	0.312161	0.0003 19	0.029778	0.020059	0.045022	0.9974
	1959-98	0.057780	0.056692	0.034565	1.290086	0.120401	0.015658	0.029512	0.2814126	0.05 1290	0.9999
CO2	1969-98	0.042849	0.065 120	0.066769	1.29 1725	0.219101	0.021960	0.046619	0.144218	0.062421	0.9999
+SO4(1)	1979-98	0.005900	0.080373	0.089123	1.284338	0.294066	0.003254	0.059687	0.094765	0.077530	0.9999
	1989-98	0.001735	0.113147	0.145400	1.311046	0.348643	0.001080	0.089295	0.126496	0.107621	0.9991
	1959-98	0.013233	0.069168	0.042078	1.556097	0.140264	0.003574	0.035949	0.315031	0.062035	0.9999
CO2	1969-98	-0.007868	0.080257	0.069792	1.531778	0.149458	-0.003388	0.052664	0.336733	0.070707	0.9999
+SO4(2)	1979-98	0.022432	0.098790	0.084691	1.53608	0.224368	0.009502	0.064298	0.268229	0.090414	0.9999
	1989-98	-0.000552	0.138996	0.143556	1.522377	0.362374	-0.000285	0.099858	0.194774	0.129777	0.9997

Table 3 (10) (11)

$$D = [0 - 0.02, 0 + 0.02], A = [\mu_A - 0.02, \mu_A + 0.02]$$

. Berliner et al.(2000)

.

0.3-0.4	가		
Table 3 ECHAM4/OPYC3		1959 - 1998 , 1969	-1998 ,
1979 - 1998 , 1989 - 1998		,	
0.15		가	
1959 - 1998 CC	2 가		
가		, 1959 - 1998	
CO2 가	0.5		

Table 3. Significance probabilities for traditional, non-Bayesian detection and attribution test results of ECHAM4/OPYC3 for the East-Asian region. Detection is very small values; attribution may be suggested by moderate or large values.

scenario		C	02		CO2+SO4(1)				CO2+SO4(2)			
noriod	1959	1969	1979	1989	1959	1969	1979	1989	1959	1969	1979	1989
period	- 1998	- 1998	- 1998	- 1998	- 1998	- 1998	- 1998	- 1998	- 1998	- 1998	- 1998	- 1998
detection	0.8503	0.8139	0.7047	0.4976	0.4449	0.2991	0.2620	0.1771	0.4201	0.2952	0.2416	0.1587
attribution	0.1232	0.7782	0.6984	0.4976	0.2091	0.3021	0.2621	0.1771	0.4085	0.2948	0.2395	0.1587

가 4. Fig. 9-Fig. 11 ECHAM4/OPYC3 CO2, CO2+SO4 (1), CO2+SO4 (2) 가 가 . Fig. 9-Fig. 11 가 가 가 가 p = 0.5가 1990 (7) . , 가 (8) . 가 Fig. 9 ECHAM4/OPYC3 CO2 , 1969 - 1998 1959 - 1998 , 1979 - 1998 1969 - 1998 , 1989 - 1998 1979 - 1998 . 가 , 1969 Fig. 10 ECHAM4/OPYC3 CO2+SO4 (1) - 1998 1959 - 1998 , 1979 - 1998 1969 - 1998 , 1989 - 1998 1979 - 1998 ECHAM4/OPYC3 CO2+SO4 (2) , 1969 Fig. 11 가 - 1998 1959 - 1998 , 1979 - 1998 1969 - 1998 , 1989 - 1998 1979 - 1998 •

Fig 9. Likelihood function, prior distribution, and posterior distribution of *a* using ECHAM4/OPYC3 fingerprint of the Siberian region. For each of the time periods (a)-(d): (left) the likelihood(solid line) and prior distribution components[anthropogenic CO2 forcing(dashed line); no anthropogenic impacts(dotted line)], and (right) the posterior mixture distribution.

Fig 10. Likelihood function, prior distribution, and posterior distribution of *a* using ECHAM4/OPYC3 fingerprint of the Siberian region. For each of the time periods (a)-(d): (left) the likelihood(solid line) and prior distribution components[anthropogenic CO2+SO4 (1) forcing(dashed line); no anthropogenic impacts(dotted line)], and (right) the posterior mixture distribution.

Fig 11. Likelihood function, prior distribution, and posterior distribution of *a* using ECHAM4/OPYC3 fingerprint of the Siberian region. For each of the time periods (a)-(d): (left) the likelihood(solid line) and prior distribution components[anthropogenic CO2+SO4 (2) forcing(dashed line); no anthropogenic impacts(dotted line)], and (right) the posterior mixture distribution.

Table 4 1959 - 1998 , 1969 - 1998 , 1979 - 1998 , 1989 - 1998

(5))	â	σ^2 =	= (G'V	^{-1}G	F) - 1					(7)
	(9)							가		(p = 0.5)	
가 ()	$p(\hat{a}))$										
Table 4	,	가	1959	- 1998	,	1969	- 1998	, 19	79	-1998 ,	1989
1998			μ	$a \mid \hat{a}$)		가				가	

Table 4. For each of the four time periods (a)-(d) of the Siberian region : GLS \hat{a} of a and associated standard deviation σ ; mean and associated standard deviation of a under the first component(no climate change) of the posterior mixture ; posterior mean and associated standard deviation under the second component(ECHAM4/OPYC3 : CO2, CO2+SO4 (1), and CO2+SO4 (2) forcing) of the posterior mixture ; posterior weight, $p(\hat{a})$, assuming prior weight p = 0.5.

scenario	period	â	σ	τ	$\mu_{\scriptscriptstyle A}$	\mathcal{T}_A	$\mu(a \mid \hat{a})$	$\tau(a \mid \hat{a})$	$\mu_A(a \mid \hat{a})$	$\tau_A(a \mid \hat{a})$	$p(\hat{a})$
	1959-98	-0.060998	0.032324	0.052631	0.916721	0.235217	-0.044291	0.027544	-0.042875	0.032023	0.9999
cor	1969-98	0.034831	0.036962	0.057798	0.9 16866	0.267 147	0.024721	0.031139	0.05 1399	0.036613	0.9986
002	1979-98	0.005243	0.045246	0.062080	0.913496	0.307351	0.003424	0.036565	0.024509	0.044764	0.9965
	1989-98	0.002327	0.064602	0.069810	0.906046	0.352744	0.001254	0.047415	0.031656	0.063545	0.9890
	1959-98	-0.143609	0.096274	0.030445	1.288598	0.087412	-0.013056	0.029028	0.641431	0.064716	0.9999
CO2	1969-98	0.151568	0.112308	0.061554	1.281634	0.162813	0.035013	0.053978	0.5 159 15	0.092447	0.9999
+SO4(1)	1979-98	0.186287	0.140360	0.107515	1.300437	0.246702	0.068884	0.085352	0.458743	0.121997	0.9995
	1989-98	-0.004005	0.194165	0.139687	1.299673	0.335439	-0.001366	0.113392	0.323174	0.168043	0.9978
	1959-98	-0.227 160	0.105349	0.039621	1.254043	0.125429	-0.028150	0.037085	0.385531	0.080670	0.9999
CO2	1969-98	-0.009920	0.121776	0.054731	1.274330	0.155393	-0.001667	0.049921	0.478699	0.095850	0.9999
+SO4(2)	1979-98	0.224568	0.151200	0.077342	1.248389	0.165374	0.046573	0.068857	0.690731	0.111589	0.9999
	1989-98	0.008339	0.216843	0.141747	1.308012	0.280744	0.002496	0.118647	0.493978	0.171613	0.9991

 Table 5
 Table 3
 가
 (10)
 (11)

D = [0 - 0.02, 0 + 0.02],

 $A = [\mu_A - 0.02, \ \mu_A + 0.02] \qquad .$

.

Table 5. Significance probabilities for traditional, non-Bayesian detection and attribution test results of ECHAM4/OPYC3 for the Siberian region. Detection is very small values; attribution may be suggested by moderate or large values.

scenario	CO2				CO2+SO4(1)				CO2+SO4(2)			
nomiad	1959	1969	1979	1989	1959	1969	1979	1989	1959	1969	1979	1989
period	- 1998	- 1998	- 1998	- 1998	- 1998	- 1998	- 1998	- 1998	- 1998	- 1998	- 1998	- 1998
detection	0.1791	0.3639	0.4 135	0.3255	0.4671	0.2363	0.1344	0.1397	0.3159	0.3111	0.1829	0.1337
attribution	0.4562	0.4577	0.4 147	0.3256	0.0000	0.0311	0.0731	0.1396	0.0000	0.3073	0.0088	0.1335

Table 5 ECHAM4/OPYC3

가

CO2 가

.

7 CO2+SO4

_

1959 - 1998 , 1969 - 1998 , 1979 - 1998 , 1989 - 1998 , 0.13

가

CO2

가

Ω	3
U	

,

•

5.

.

.

.

Table 6	ECHAM4/OPYC3				2010	2090
GCM		2002	10		(:)	
			CO2	가	CO2+SO4 7	

Table 6. Regional mean of yearly mean temperature variation of GCM scenarion run

		East-Asian region	1	Siberian region				
	CO2	CO2+SO4 (1)	CO2+SO4 (2)	CO2	CO2+SO4 (1)	CO2+SO4 (2)		
2010	0.30992	0.47 133	0.39452	0.5204	48 0.85438	0.66047		
2020	0.17447	0.71966	0.66438	0.604	13 1.18997	0.98227		
2030	0.744 18	0.96299	0.65827	1.4557	1.55605	1.14556		
2040	1.28704	1.11845	1.16153	2.1972	1.69651	1.57073		
2050	1.63357	1.467 10	1.39859	2.6229	2.30221	1.96974		
2060	2.58089			3.7 120)6.			
2070	3.05595			4.4204	48 .			
2080	4.10992			5.830	15.			
2090	4.45 102			6.5625	58 .			

6.

가

,

가

ECHAM4/OPYC3

GCM

[1] Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis. 2nd ed. Springer-Verlag, 617pp.

[2] Berliner, L. M., R. A. Levine and D. J. Shea (2000). Bayesian climate change assessment, *Journal of Climate*, 13, 3805-3820.

50