AN INTEGRATED DYNAMIC O-D ESTIMATION
MODEL FOR URBAN NETWORKS
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| . INTRODUCTION

As the estimation of time-varying O-D
distributions at different aggregation levels
provides of time-varying O-D distributions at
different aggregation levels provides a direct
and cost-economic way for understanding urban
traffic it has
number of methods for O-D estimation has

flow patterns, considerable
been reported in the literature. Depending on
whether a dynamic traffic assignment model
(DTA) is needed or not, one may classify all
such studies into the following two categories :
assignment-based and non-assignment-based
methods.

One key feature of the proposed approach is
to employ the intersection turning flow data
along with the path flow information from a
DTA model to increase the observability of a
given network system. In this paper, the turning
flows are used not only for the subnetwork
O-D estimation in a two-stage computational
process, but also used to provide an additional
set of constraints in identifying path flows
from a DTA model. The application of such
information has

turning flow significantly

improved the estimation accuracy.

Il. A CORDONLINE MODEL FOR
NETWORK O-D ESTIMATION

For an urban network, a cordonline is
defined as a hypothetical closed curve that
intersects with a set of link stations, and
divides the network into two parts: inside and
outside each encircled subnetwork. The set of
on both the

cordonline network links provide the time-

detector or counting stations

varying flow information for estimation.

{Figure 1) Cordonline flow
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Vre)=v"(k)+ v, (k) (1)
vok)=v (k) + vy (k) 2)
VIJr (k) and V2+ (k) can further be expressed as:

B0=3 3 3 ppb, k-m)g,k-m)

€0y jeD, m=0 (3)
0=F 5 S o komale-m)

As all flows in ¥, (k) are form flow
V) (k—=m) with a time lag m. Thus, the

interrelation between V> (<) and V. () can
be expressed as follows:

Vi )= sl G -1 v G-M) (5)

where f is a function. If the cordonline
covers a relatively small subnetwork, most

trips in V2 () shall come from ¥ (k) and

v, (k _1). Thus, the above equation can be
simplified as

vy (k)=alk)Vy e+ 1-alk 1]V (k1) (6)

where @ (k) is the fraction of V> &) having
the second crossing over the cordonline during
time interval k. Based on Egs. (3), (4) and
(6), one can construct the following relations
between each set of cordonline flows and O-D
flows:

ak)V* (k) +[1—alk -1V (k1) -V (k)
=Y Y Slal)on () [-alk-1]pr &1y, (c—m)b, (c—m)

kO, jeb, m=0

I WHOHCATIC .

If the fraction parameters{@ (&)} and

{p i (k )} are known, one can directly use
Eq.(7) to estimate OD parameters.

1. Integration of Constraints Form
Link And Intersection Turning
Flows Given A Reliable DTA Model

Assuming that the estimated O-Ds, (B (k)} |
have been obtained with our proposed non-

assignment model, one can assign ,.°,,..
with an available DTA model to compute the

route-choice matrices {47(k)} | parameters

{pi(K)} and (P ()} The route-choice
fractions are used to bridge the O-D flows with
their resulting link and turning flows.

With all such information, one can construct
the following set of constraints based of the

flow counts {Zl (k)}on link 1:

Z, 0=y, > Y B lk—m4 (k—md(p.)p} k) ®)
m or p

Note that Eq. (10) is identical to Eq. (1)
but with different notation, and it is the core
equation of all assignment-based O-D estimation
models. To take full advantage of available
information, we propose, in addition to Ea.
(10), to construct the following set of new
constraints from intersection turning flow data:

L®=YY Y Bk-m4 k-md (pdypk) o

To compress the notation, we redefine the
following vectors:

Z(k) = (Z,(k),..., Z,(K),..)"

Then, Egs. (8) and (9) be restated in a
more compact form as :

Z(k)= ZC’”(k)B(k—m) 10

(1D

where M is the number of lag intervals.

Egs. (10) and (11) are the two sets of
assignment-based constraints which serve as
the measurement equations for model estimation.
For instance, one can restate Egs. (10) and
(11) into the following forms:

T(k) = f C™™ (k)B(k — m)

Z(k)= 3, C" (k) B(k —m) = C° (k) B(k) + £ (k) 12

T(k) =, C™" (k)B(k —m) = C° (k)B(k) +y(k) (13)

where €(k) and Y(¥) are two error terms.
The left-side terms of Egs. (12) and (13) can
be computed with measurable flows (e.g.
{Z(k)} ang (T (k)}) and previously estimated
O-Ds (e.g. Blk—m),m =1,.., M) The vector
B(k)in the right terms is the
parameter that needs to be estimated.

To improve the estimation accuracy, one can
also employ the estimated O-Ds from the

system
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previously discussed two-stage approach to set
up the following additional constraints:

B°(k) = B(k)+n(k) (14)
where T(k)

associated with the estimated O-Ds {B" (k)} .
Eq. (14) serve as a measurement equation
along with Egs. (12) and (13) for model
estimation.

Similar to those studies in the literature,
we apply the Kalman-filtering approach on
system Egs.(12-14) to derive the O-D matrix.
To do so, one needs to assume that the
time-varying O-Ds follow an auto regression
process as follows: '

Bl)=0Bk—D+0y(k=2)+ -+, Bk—p)+k) (15)

where #(k) is a vector of error terms and D

is a vector of error terms

is a prespecified constant.

Applying the Kalman-filtering procedures on
those measurement and state transmission
equations (i.e. Eqs. (12)-(15)]. one can easily
obtain the following recursive solution for O-D

parameters {B(k)} :

B(k)=B(k—1)+G[Z(k)—iC'" (k)Blk—m)—C" (k) B(K)]

+G,[T(k)- i C" (k)B(k —m)—C™ (k)B(k)v]

m=1

+G,[B°(k) - B(k)] (16)

where B(k) is the predicted O-Ds with
state transmission equation that is computed
as:

B(k)=a,Blk—1)+a,(k=2)+-+a,Blk—p) (17)
and G=(G|,G2,G3)

which can be computed as:

is the gain matrix

T

C
(G,,G,,G;)=U (k)| C"(k)
I
C(k) c'w)Y (v.k)y o o Y
CoRYyUmw|c k)| +| 0 V¥, (k) 0
i I 0 0 ¥,k (18)

[ in Eq. (18) is the identical matrix. U k)

is the covariance matrix of #(k)  and Ve (k) ,

Vy (k), Vn (k) are covariance matrices of

g(k)  v(k) and NKk) | respectively.

2. Algorithm

A step-by-step description of the estimation
algorithm for the proposed integrated model is
presented below :

Step O : Perform the two-stage O-D estimation

and compute O-D flows {B, (¥)} estimated
with non-assignment approaches;

Step 1 :Assign the estimated O-D {B, (k)}
flows with the available DTA model,
and compute the assignment matrix
Al (k)

Step 2 : Construct constraints shown as Egq.
((12)-(14)) and establish additional
constraints if sampled or partial O-Ds
are available:

Step 3 : Compute the coefficient matrix C" (k) ,

C™" (k) in Eq. (12) and (13):

Step 4 : Compute the gain matrix G with Eq.
(18) .

Step 5 : Predict {B,(X)} with state transmission
Eq. (17)

Step 6 : Compute the O-D estimate with Eq. (16)

Il. AN ILLUSTRATIVE EXAMPLE

1. Example Network Design

origin nodes : 1, 2
destination nodes : 5, 6, 7, 8
& O-D parameters : bys ’bl,6 ‘b|.7 'bl.s ’b“ ,bz,s ,b2,7 ,

b2.8

intermediate nodes : 3, 4
pretimed signalized intersections : 3, 4, 5, 6

two entry streams &1, 82at nodes 1, 2

four exit streams s5,Ys, Y7 )% at nodes 5.6,7.8

35 sets of different entry volumes and turning
fractions, where k=1,2,---,35

each time interval : 10 min.

The information of turning flows, route-
O-D data were
identified from the simulation output data.

Simulation tool : NETSIM.

choice splits and actual
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2. Experimental Design

Scenario-1

Entry flows from nodes 1, 2
Exit flows from nodes 5, 6, 7, 8
Non-assignment based approach based on

entry and exit flows

Scenario-2
Entry flows from nodes 1, 2
Exit flows from nodes 5, 6, 7, 8

Cordonline flows from two cordonlines %, &
based
cordonline model

Non-assignment approach with a

Scenario-3
Entry flows from nodes 1, 2
Exit flows from nodes 5, 6, 7, 8

Cordonline flows from two cordonlines 4, &
Flows from all links
Route—choice splits from each O-D pair and its
feasible paths
Turning flows at intersection 3, 4, 5, 6
Integrated estimation method with intersection
turning flow data
Using the rooted-mean-squared (RMS) errors
as the evaluation -criterion:the comparison
results between those scenarios are reported in
Table 1. It clearly indicated that if a reliable
DTA is the
approach can provide an effective and accurate

available, proposed combined
of dynamic network O-Ds

Table 1. Comparison of RMS among Different

i

Scenarios
Scenario~l | Scenario-2 | Scenario-3
bis 0.0459 0.0373 0.0219
by 0.0318 0.0292 0.0157
b, 0.0283 0.0284 0.0106
by g 0.0341 0.0195 0.0163
bis 0.0406 0.0242 0.0156
b, 0.0276 0.0203 0.0091
s 0.0384 0.0272 0.0122
- 0.0338 0.0179 0.0078
overall 0.0351 0.0201 0.0137

IV. CONCLUSIONS

This paper presents an effective method for
dynamic O-D distributions in urban networks:
The proposed method not only has the strengths
of both categories of dynamic O-D estimation
models in the literature, but also is capable of
taking advantage of intersection turning fraction
data.

The construction of an additional set of
constraints with available or estimated intersection
turning flows has substantially improved the
estimation results. It thus is not only a core of
our proposed combined estimation method, but
also an improvemenf to those studied relying
on a DTA model for exploring the dynamic O-D
issue.
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