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Abstract another than objects assigned to different clusters.

A regression model is used in predicting the
response variable given predictor variables. However,
in case of large number of predictor variables, a
regression model has some problems such as
multicollinearity, interpretation of the finctional
relationship between the response and predictors and
prediction accuracy. A clustering method and
stepwise regression could be used to reduce the
amount of data by grouping predictors having similar
properties and by selecting the subset of predictors,
respectively. This paper proposes a prediction method
combining clustering method and stepwise regression.
The proposed method fits a global model and local
models and predicts responses given new
observations by using both models. This paper also
compares the performance of proposed method with
stepwise regression via a real data example obtained
in a steel process.

1. Introduction

Regression model provides an adequate and
interpretable description of how the predictors affect
the response. However with a large number of
predictors, regression model offen suffers fiom its
poor prediction accuracy and interpretation. To
overcome these drawbacks, many statisticians
propose various methods: variable subset selection
(best subset regression, forward stepwise selection,
backward stepwise regression, stepwise regression
and etc), coefficient shrinkage (ridge regression, the
Lasso and etc), and methods using derived input
directions (PCR, PLS and etc). These methodologies
are described in detail [1]. Frank et al also discuss the
pros and cons of these methodologies [2]. Variable
subset selection has good points of producing an easy
interpretable model by retaining a subset of the
predictors and discarding the rest while the others has
difficulty in interpretation because they predict
responses with linear combinations of original
predictors.

Clustering method is a descriptive task that seeks
to identify homogeneous groups of objects based on
the values of their attributes (dimensions). Objects
within each cluster are more closely related to one
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Clustering methods have been studied extensively in
statistics. Sharma describes the details of clustering
method [3]. In case of large number of predictors,
clustering method can be used to reduce the
dimensions of predictors by grouping predictors
having similar properties.

In this paper, we assume a large number of
predictors and one response. The proposed method
predicts responses given new observations via a
global model and local models. They are grouped and
fitted by clustering method and stepwise regression.
The way to divide into and fit a global model and
local models will be explained in detail in the section
3. In the section 2, we will explore some basic
concepts concerning clustering method and ten-fld
cross validation to understand this paper In the
section 4, we compare the performance of the
proposed method with stepwise regression through a
real data example obtained in a steel process. Finally,
section 5 concludes with some remarks.

2. Literature review
2.1. Clustering method

The objective of cluster analysis is to group
objects into clusters such that each cluster is as
homogeneous as possible with respect to the
clustering variables. Current clustering techniques
can be broadly classified into two categories:
nonhierarchical and hierarchical. Given a set of
objects and clustering criterion, nonhierarchical
clustering such as K-means and K-medoids obtains a
partition of the objects into clusters such that the
objects in a cluster are more similar to each other
than to objects in different clusters. A hierarchical
clustering is a nested sequence of partitions. An
agglomerative hierarchical clustering start by placing
each object in its own cluster and then merge these
atomic clusters into larger clusters until all objects are
in a single cluster [3].

Various clustering methods are identified
according to definition and evaluation of similarity.
Euclidean, Minikowski, Mahalanobis distance are
generally used similarity definitions. Centroid,
nearest neighbor (single linkage), farthest neighbor
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(complete linkage), average linkage and Ward’s
method are also generally used techniques to evaluate
similarity between an object and a cluster In this
paper, we employ Euclidean distance and Ward’s
method to obtain local groups. The definition of
Euclidean distance between objects i and j with p
dimensions is as fllows

D=, Xy=X; )M )

The Ward’s method tries to group objects

minimizing the total within group or within cluster

sums of squares of defined similarities (Euclidean
distance here) [31.

2.2. Ten-Bld cross validation

The simplest and most widely used method for
estimating prediction error is cross validation. Ten-
Pld cross validation works by dividing the training
data randomly into ten equal parts. The leaming
method is fit to nine-tenths of the data, and the
prediction error is computed on the remaining one-
tenth. This is done in tum fr each one-tenth of the
data, and the ten prediction emor estimates are
averaged. Here are more details. Assume data of N
observations and divide the data into 10 partitions
having equal size. Then we have 10 partitions
consisting of (N/10)x9 train observations and N/10

test observations. Denote by f(x), (i=1,...10)
the fitted fanction, computed with the i-th partition

removed. Now, prediction error is defined as ©llows.
In the case of training,

CY; =1/(9N/10)) |
In the case oftesting,
Y, =1/(N/10))"
And
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3. Proposed method

Suppose that there are owne response and »
predictors having m observations each. Let y,,

(i=1,...,m) be i-th observation ofa response and Y

be mx! response matrix composed of y,. Let Xis
(i=1,..,m, j=2,...p+1) be i-th observation of (j-
1)-th predictor and X be mx(n+1) predictor matrix

composed of x; and x,=1. Summary of the

proposed method are as Hllows.

3.1 Modeling algorithm
Step 1: Standardize predictor variabl es.
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(e = %;)[s

_ m
where X = zi:l xij/m

and s; =Zi=l(x,~j—§j)2/(m— 1),

(=2,..n+1)
Step 2: Fit a stepwise regression model of ¥ on X
with addl and removel, which are levels of
significance for adding a predictor into a model and
removing a predictor ffom a model, respectively. We
define the (n+1)x1 coefficient matrix ofthis stepwise
model as that of a global model denoted by

B et removy- Then the hat matrix of a response by

..(6)

global model is as follows

Y= XB(gaddl,removel) . (7)
And transform original response as Hllows
Z=Y~- XBéddl,removel) (8

Step 3: Divide » predictors into n, global predictors
and n, local predictors (n = n, + n). If the global
model includes a predictor, we consider this predictor
as one of global predictors and local predictors,
otherwise.

Step 4: Consider global predictors determined by
step3 as cluster variables and divide observations of
predictors into X groups by clustering method (In this
paper, we adopt Euclidean distance and Ward’s
method in cluster method). Now let m, be the number
of observations assigned in k-th group, X, be
mX(n+1) matrix composed of x;s assigned in A-th
group and Z, be mxl matrix composed of the

observations of a transformed response which
correspond with those of X,, (k=1...K). Note
that cluster method in this step uses only global
variables and the observations ofn, global predictors
in each K groups become more similar than those of
n; local predictors.

Step 5: Fit a stepwise regression model of Z, on
X, with two levels of add2 and remove2 and with
global predictors excluded ffom a model in each K
groups (i.e., coefficients of global predictors are all
zeros). We define the (n+1)x1 coefficient matrix of
this stepwise model as that of'a local model ineach K

groups and denote this by B,f,(a dd2,remove2) - 1 Den the

hat matrix ofa Z, is as Bllows
Zk =XkBI£,(ad12,remove2) ’ (k =1""K) - (9)

3.2 Prediction algorithm without smoothing

Suppose new observation P7 =(p,,...,.p,).
Step 1: Transform new observation as Hllows
(pj—fj)/sj, (G =12,...n) ...(10)
Step 2: Identify the group to which new observation
is assigned by clustering method. Let the index ofthis
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Step 3: Predict a response given new observation as
follows

—pT T pl
Ynew [P— P B(iddl,removel) +P Bc,(addZ,removeZ) (1 Y

3.3 Prediction algorithm with smoothing
Step1~Step2: The same as described in 3.2.

Step3: Predict a response given new observation as
Pllows

K
_ pT Tpl
Ynew IP— P B(iddl,removel) + E kzlakP Bk,(aa'dZ,removeZ)

K
where Zk:lak =1 and o) 20
...(12)

4. Example
4.1 Data description

In order to investigate the performance of the
proposed method, we apply the proposed method to
real data obtained in sequential steel process: steel-
making = hot rolling mill - cold rolling millL

Table 1. The notations and brief descriptions of

predictors
Production Process . .
Process Variables A Brief Desaription
Cu The amount of copper
Mn The amount of manganese
Nb The amount of niobium
Si The amount of silicon
Sol_Al The amount of aluminum
Ni The amount of nitrogen
Steel
Making v The amount of vamdium
(M) Mo The amount of moly bdenun
B The amount of boron
Cr The amount of chromium
N The amount of nitrogen
Ti The amount of titanium
C The amount of carbon
H_Line_Spd Lmne speed m hot rolling mlt
— process
M2_Min Time spent in the reheating
Hot furnace
Rolling CT _Top Temperatu¥e in !.he.top part of coil
Mill while winding coil
i - = -
. Temperature in the tail part of coil
1 o .
(HM) CI T while winding coil
FT0 Top Temperature before finishing mill
FDT_Tail Temperature afer finishing mill
MI_Min Time spent in the heating furnace
TCM_Rate Pressure reduction ratio
Cold TM_Rate Pressure red!.lction' ratio in
Rolling roughing mill
Mill HR_Thickness The thickness of hot coil
(™) C_Line_Spd Line speed in anrealing process
SS Temp Annealing temperature

The purpose of this study is to investigate the
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relationship between the hardness of stecl (i.e., one
response) and 25 process variables (i.e., 25
predictors). 25 predictors are selected through
opinions of the experts and some statistical tests. The
brief descriptions ofpredictors are shown in Table 1.

4.2 Results of stepwise regression

Before adopting the proposed method, we
consider stepwise regression and estimate prediction
error via ten-fold cross validation. In the result shown
in Table 2 we obtain estimated cross validation error
0f0.584.

Table 2. Ten fold cross validation error over train
set and test set with add1=0.1 and removel=0.1

Train set Test set
cv, 0.462 0.663
Ccv, 0.455 0.739
Cv, 0.492 0.424
Cv, 0.454 0.790
CV; 0.443 0.876
CV, 0.485 0.439
Ccv, 0.512 0.300
CV, 0.470 0.642
CV, 0.496 0.448
CVy, 0.498 0.521
CVag 0.477 0.584
CVy 0.023 0.186

4.3 Results of proposed method
4.3.1 How to determine the number of local models
To determine the complexity parameter k (the
number of local models) ofthe proposed method, we
consider the estimated prediction error curve shown
in Figure 1 and obtain this over test and train set by
ten-©ld cross validation. In this example, /=5 seems
appropriate due to the lowest cross validation error
over test set.

0.600
0.550 r
I 0.500 }
w
2 0.450 } .
FeS .- o--®
.
0400 o . - -®-r-
0.350 == . . 5 >
- - ®- - yainset | 0.385 { 0.401 | 0.411 | 0.433 | 0.444
f——m——iostset | 0.499 | 0.404 | 0.527 | 0.543 | 0.550

The number of tocal models (k)

Figure 1. An estimated prediction error curve that
shows how to determine the number of local
models with addI=0.1, removel=0.1, add2=0.15
and remove2=0.15

4.3.2 Relationship between global and local model



=Z F18k3| 2002 EHSSE =M

(KAIST)2002 58 3&€4¢<

/St

3l

=

Consider the relationship between a response
and 25 predictors. Table 3 shows the index of the
tenth model in ten-©ld cross validation with
addl=0.1, removel=0.1, add2=0.15, remove?=0.15
and &=5. In the Table 3, index ‘1’ denotes a predictor
included in a model. For example, the global
behavior ofsteel hardness is explained well by Cu, V,
M2 Min, FTO Top and TCM Rate. The local
behavior could be divided into 5 groups each having
identified properties. This embedded information is
helpful ©r more insight to control steel hardness.

Table 3. The tenth model that shows which
predictor is included in global model and local
model with addI=01, removel=0.1, add2=0.15,
remove2=0.15 and k=5

Localmodel

odel

Description
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4.3.3 Smoothing of local models

Let Dist(4,B) be the Euclidean distance between
A4 and B. Let C; be the average sums of squares of
Euclidean distances between observations within & th
local model (In short, C, means the Centroid of £ th

local model). Now, we adopt smooth parameter o,
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as Pllows

a, = (Dist(P,C,) / Zj; Dist(P,C,))? ...(13)

Above g is shape parameter of smoothing weight. In
Table 4, g was set to 7 and this results in about 0.01
decrease of estimated prediction error compared with
without smoothing.

Table 4. The effect of adopting smoothing weight

with addl=0.1, removel=0.1, add2=0.15,
remove2=0.15, k=5, and ¢q=7
Without smoothing With smoothing
Train set Test set Train set Test set

Cv, 0.399 0.561 0.389 0.576
Cv, 0.388 0.735 0.390 0.780
CV, 0.422 0.151 0.414 0.150
Cv, 0.424 0.829 0.424 0.738
CV, 0.349 0.757 0.344 0.742
Cv, 0.394 0.382 0.393 0.371
Cv, 0.386 0.203 0.386 0.233
CV, 0.454 0.434 0.433 0.382
Cv, 0.396 0.506 0.395 0.506
CVy, 0.396 0.383 0.402 0416
CV,, 0.401 0.494 0.397 0.489
CVy, 0.028 0.230 0.024 0.218

5. Conclusion

We propose a prediction method combining
clustering method and stepwise regression. This
method divides observations of predictors into some
local groups having homogeneous observations of
some predictors and heterogeneous observations of
the others. Those are considered as global predictors
explaining global behavior of a response and these as
local predictors explaining local behavior Both are
independently used to fit global and local model by
stepwise regression. Eventually, a response given
new observation of predictors will be predicted by
both global and local model. A real example showed
that the proposed method results in 16.27% decrease
of estimated prediction error compared with typical
stepwise regression.

The proposed method can be improved by
adopting altemative smoothing parameter and
clustering algorithm. We leave these future works.
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