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Abstract
In this paper, we consider a discrete-time
two-phase queueing system. We derive the PGF
of the size that it
decomposed into two probability generating
functions (PGFs), one of which is the PGF of
the system size in the standard Geo/G/1 queue.

system and show is

Based on this PGF, we present the performance
measure of interest such as the mean number of
customers in the system.

Discrete-time Two-phase

Keywords: Queue,

Queue, Decomposition Property

1. Introduction

Two-phase queueing systems have been
discussed in the past due to their applications in
various areas such as computer, communication
and stochastic systems. In many computer and
communication service systems, the situations
where arriving packets receive a batch mode
service in the first phase followed by individual
the

common. Recent applications of this queueing

services in second phase are naturally
system have been discussed by Krishna and Lee
[8] and Kim and Chae [7], for example. Note
that many papers on two-phase queueing systems
have mainly concentrated on the continuous-time

models. But there are no results that deals with

859

analysis of the discrete-time two-phase queueing
system. As far as we know, this paper appears
to be the first that with the

one deals

discrete-time two-phase queueing system.
In this paper, we consider a discrete-time
two-phase queueing system. Packets arrive at the
system according to a Bernoulli process and
receive batch service in the first phase followed
by individual
When the
services, if the system becomes empty,

services in the second phase.

server completes second phase
it

turned off. After an idle period, if a packet

is

arrives, the server is turned on and begins to
serve packets. This type of queueing problem
be

situations:

can easily found in wvarious practical

Consider a central processor connected to a
of distributed
sub-processors. The central processor collects the

number peripherals or
jobs arriving at the peripherals or the distributed
sub-processors in batches and processes them
sequentially. When there is no on-line job for
collection, the processor can be switched to
process the off-line jobs, to wupdate storage
devices or to attend to some maintenance/repair
work. As soon as a job arrives, the server is
turned on and starts to serve jobs in batch
mode.

The rest is

of the paper organized as
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follows. Section 2 gives assumptions of our
the probability
generating function (PGF) of the system size

=P
on

J

system. Section 3 presents

and its mean. Finally, Section 4 concludes this
paper.

2. System and Assumptions

We assume that the time axis is divided into
fixed-length time intervals, called slots and that
service times can be started and completed only
at slot boundaries and that their durations are
integral multiples of slot durations. We will
adopt a Late Arrival System with Delayed
Access (LAS-DA) where packets
during a slot and get delayed access to the

arrive  late
server if they arrive to find the system empty.
The slot in which a packet arrives is not
counted in calculating his’her waiting time.
Readers are referred to Bruneel and Kim [2],
Hunter [6, p.193] and Takagi [9, p.4] for more
details on LAS-DA.

This paper considers the system that satisfies

the following assumptions.

Assumptions.

Packets arrive at the system according to a
Bernoulli process with mean 1/A. When a packet
arrives, the first phase service starts and the
server operates on an exhaustive batch mode
service for the packet and the arrivals that occur
during the batch service are served. The batch
service times {B;, i=1,2,--} are independent
distributed  (i.id.)
variables with distribution function B(# and PGF
B(z). At the end of the batch service, the
entire batch is transferred to the second phase

and identically random

for individual service under the FIFO principle.
The {S;, i=1,2,}
are ii.d with distribution function S(# and PGF
S(z). The that during the
individual services have to wait in the first
the batch After
completing the individual services for the batch

individual service times

arrivals occur

phase for next service.

in the second phase, the server returns to the

first phase to start the next batch service or
when the system empties, the server becomes
idle. The idle server does not start the batch
service until a packet arrives.

The symbols in this paper are defined as
follows.

Q: the system size at the beginning of a

batch service

O;: the system size at the completion of
the batch service

0,: the system size at the end of the
individual services of the batch

B: the batch service time

S: the individual service time

M: the system size at an arbitrary time
point

0(2).0,(2), 0,(2): PGF of 2.0,.0,

r(z): PGF of M

B(z),S(z): PGF of B,S

g, =P(Q,=0)

y=AE(B), p = AE(S)

b(z)=B(Az+1-1) s(z) = S(Az +1- 1)

3. Analysis

A. Regeneration cycle analysis

From the definitions of the above variables,
the following relations can easily be seen:

Ql =

Q + the number of arrivals during
the batch service

0, = the number of arrivals during the
individual services of the O packets
o) it 0,>0
Q= 2 ] 2_
1 if 0,=0

Because the PGFs of the number of arrivals

during B and S are B(z+1-1) and

S(Az+1-A), respectively (see eg. Takagi [9,
p.5, (1.9b)]), the above relations are translated to

0.(2)=0(z)-B(Az+1-2)
0:(2)=0,(s(Az+1- 1))
Q(Z)z[Qz (Z)"'qu]"'%z

)
@
3



Combining (1), (2) and (3), we get

0(z)=

0(S(Az+1-1))- B(AS(Az+1-A)+1-1)—g,(1-2)
4

Differentiating (1),(2) and (3) with respect to z

and evaluating at z=1 (1), we get

E(Q)=E(Q)+y )
E(Q,)= pE(Q) (6)
E(Q)=E(Q,)+4 )

From (5), (6) and (7), we get

_Yrq
E(Ql)_ 1"‘P

Dividing the regeneration cycle into the initial
idle period and K sub-service cycles each of
which consists of a batch service and the
individual services of the batch, we get

E(K)=1/q,

Let D be the number of arrivals during the
initial delay which consists of a idle period and
K first-phase batch service periods in the cycle
and T be the number of arrivals during the
delay-cycle (or, equivalently the regeneration
cycle). Then, based on the delay cycle
arguments (Takagi [9]), we can find the
following expected values.

1
E(D)= -AE(B)=1+—
(D)=1+E(K)-AE(B) 1+qu ®

l-p 1-p ¢, &)

Let Tc be the regeneration cycle length. Then

the expected value, E (Tc) is obtained using the
Wald's equation.

E(T.)=E(T)E(4) (10)

where the expected interarrival time, denoted by
E(A), equals A™.

Let TP stands for the test packet, then we
can derive the following probabilities from (8),
(9) and (10), based on renewal reward
arguments and on the property of BASTA
(Boxma and Groenendijk [1])

Pr(TP arrives during an individual service
period)
E(TE®S) _

T TET) =AES)=p (11.2)

Pr(TP arrives during a batch service period)

_E(K)E(B)__E(B) _AE(B)_(i-p)y
E(T.)  E(Q)E(4) E(Q) 7v+q

(11.b)

Pr(TP arrives during an idle period)

_EWw_ 1 ¢ _(-p)a
E(T,) E(QI)E(K) E(Ql) Y+4q, (11.¢)

B. The system size distribution
The key point is that the system under study
belongs to the class of Geo/G/1 queues with
generalized vacations (see Takagi [9, p.90]) such
that both idle periods and first-phase periods act
as if they were a vacation period. Thus, the
decomposition property of the Geo/G/1 queue
with generalized vacations applies to our system.
That is, PGF of the system size at an arbitrary
slot equals the product of two PGFs; one is the
PGF of the system size of an ordinary Geo/G/1
queue (without vacations) at an arbitrary slot,
and the other is the PGF of the system size at
an arbitrary slot during a vacation period.
The system size PGF for an ordinary
(- p)1-2)s(z)
Geo/G/1 queue is known as s(z)-z
where $(z2)=S(Az+1-1) (see Takagi [9, p.5
(1.9a)). To obtain the system size PGF at an
arbitrary slot during a vacation period, we use
the arrival time approach of Chae et al. [4].
The system size PGF at an arbitrary slot during
a vacation period consists of two parts
depending on whether TP arrives during an idle
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9o
period with a (conditional) probability 7y+gq,,

7]

then the PGF equals 1; and if TP arrives during
period  with (conditional)

v
y+q0 I

a first-phase a

probability then the PGF equals

1-blz
Q(Z);(Tf(z‘;, where b(z)=B(Az+1-2).

Putting all these together, we finally get the
PGF of the system size at an arbitrary slot (or,
due to the BASTA property, at TP's arrival
point of time).

r(z)
(1‘P)(1*Z)S(Z)[
s(z)-z

Y
Y+d4,

9
Yt+4q,

-Q(z)-l_b(z)}

y(1-2)

(12)
If we differentiate (12) with respect to z and
evaluate it at z=1, we get the expected system
size..

A«ZE(SZ)—/’LP+12E(BZ)+ Y '}/2
2(1-p)  2(y+4,) 1-p Y+q
(13)

EM)=p+

4. Conlusions

In this paper we analyzed a discrete-time
two-phase queueing system for the exhaustive
batch service. We presented the PGF of the
system size and showed that it is decomposed
into two PGFs, one of which was the PGF of
the system size in the standard Geo/G/1 queue.
Based on this PGF, we presented performance
measure of interests such as mean number of
packet in the system.

Based on the results of this paper, further
study the
discrete-time two-phase queueing system with

research is required to for
various threshold policies, such as multiple and

single vacations.
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