MUTEE /B RAANE S 2002 EHESASHS
3 (2002 58 32-4¢

X GH NS 2ol LEANE SHO e SAR JIY
A Heuristic Approach to Disassembly Scheduling with Assembly Product Structure

Dong-Hoe Lee and Paul Xirouchakis

Department of Mechanical Engineering (STI-IPR-LICP)
Swiss Federal Institute of Technology — Lausanne (EPFL)
Lausanne, CH-1015
SWITZERLAND

e-mails: {dong-ho.lee, paul.xirouchakis} @epfl.ch

Abstract

Disassembly scheduling is the problem of determin-
ing the ordering and disassembly schedules of used
products while satisfying the demand of their parts
or components over a certain planning horizon. The
objective is to minimize the sum of purchase, setup,
disassembly operation, and inventory holding costs.
This paper considers products with assembly struc-
ture, i.e., products without parts commonality, and
suggests a heuristic in which an initial solution is
obtained in the form of the minimal latest disassem-
bly schedule, and then improved considering trade-
offs among different cost factors. To show the per-
formance of the beuristic suggested in this paper,
computational experiments were done on the modi-
fied existing examples and the results show that the
heuristic can give optimal or very near optimal solu-
tions within very short computation times.

1. Introduction

Disassembly is one of the important remanufac-
turing or recycling processes, since most products
should be disassembled before they are remanufac-
tured or recycled. See O’Shea et al. (1998), Gungor
and Gupta (1999) and Lee et al. (2001) for literature
reviews on various disassembly problems.

Among the various disassembly problems, this
paper focuses on disassembly scheduling that de-
termines the ordering and disassembly schedules of
used products while satisfying the demand of their
parts/components over a certain planning horizon.
In general, disassembly scheduling is an important
short-term (or mid-term) production planning prob-
lem in disassembly systems. In other words, from
the solution of the problem, we can determine which
items (products/subassemblies), how much (amount

686

of disassembly operations), and when (planning
period) to disassemble used products in order to
satisfy the demand of their parts or components.

Not much work has been done on the disassembly
scheduling problem. Gupta and Taleb (1994) define
the basic form of the disassembly scheduling prob-
lem, i.e., a single product with assembly structure.
Since the problem is a reversed form of material
requirement planning (MRP), they suggest an MRP-
like algorithm. Later, Taleb et al. (1997) extend the
basic model by considering the parts commonality,
and suggest another MRP-like algorithm with the
objective of minimizing the number of products to
be disassembled. Here, the extended problem is
more complex than the basic one since the parts
commonality results in one or more alternative pro-
curement sources for each common part and hence
creates dependencies among different components.
Also, Taleb and Gupta (1997) consider the case with
multiple products as well as the parts commonality.
Neuendorf ez al. (2001) suggest a Petri-net approach
to solve the problem with parts commonality, and
Lee et al. (2001) extend the basic problem of Gupta
and Taleb (1994) by considering various cost factors,
and suggest an integer programming model that can
give optimal solutions for small-to-medium sized
problems. Recently, Lee et al. (2002) suggest an-
other integer programming model for the problem
with resource capacity constraints.

The problem considered here is the same as that
of Lee et al. (2001), i.e., the assembly product struc-
ture without parts commonality. Although the inte-
ger programming model of Lee ef al. (2001) can be
directly used to solve small-sized problems, it is not
adequate for large-sized problems due to its exces-
sive computation times. Therefore, in this paper, we
suggest a fast heuristic that can give near optimal
solutions within very short computation times.

HBES /Bt RE DG 2002 EHESSEEUE
ER(KAIST) 20024 58 3-4

2. Problem Description

This section begins with the definition of the dis-
assembly product structure, which can be obtained
from the solution of the disassembly planning prob-
lem that determines the disassembly level, the disas-
sembly sequence, and/or the end-of-life options of
the disassembled parts/components. See O’Shea et
al. (1998) and Lee et al. (2001) for more details on
disassembly planning.

In the disassembly product structure, the root item
represents the product itself and each leaf item
represents any item that cannot be further disassem-
bled. Also, a child item represents any item that has
a parent at the next higher level and a parent item is
any item that has at least one child. Note that each
item has at most one parent in the assembly product
structure without parts commonality. Fig. 1 shows
an example of the disassembly product structure,
called the GT example in this paper, obtained from
Gupta and Taleb (1994). In this figure, item 1 repre-
sents the root item, and items 6, 7, 8, 9, 10, 11, and
12 represent the leaf items. The number in parenthe-
sis represents the yield of the item when its parent is
disassembled, e.g., item 5 is disassembled into three
units of item 10, two units of item 11, and three
units of item 12. Here, item 5 is called parent item,
while items 10, 11, and 12 are called child items.
Also, in the figure, DLT means disassembly lead-
time, i.e., the time required to disassemble a parent
item.

Lower
level 6

A

@1

v
Higher
level

Figure 1. Disassembly product structure of
assembly type: an example

The disassembly scheduling problem considered
in this paper can be defined as the problem of de-
termining the ordering and disassembly schedules
of the root item and the disassembly schedule of all
parent items in the given disassembly structure of
assembly type, while satisfying the demand of leaf
items over a certain planning horizon with the ob-
Jective of minimizing the sum of purchase, setup,
disassembly operation, and inventory holding costs.
To explain the problem more specifically, additional
data of the GT example are summarized in Table 1.
The planning horizon consists of 10 discrete periods.

687

Table 1(a) shows the initial inventory for product,
subassemblies, and parts at the beginning of the
planning horizon, which remains at the end of the
previous planning horizon. Table 1(b) shows the
scheduled receipts from external sources over the
planning horizon, i.e., items that are expected to
arrive from outside sources and not from disassem-
bly. Finally, the demand of each leaf item over the
planning horizon is summarized in Table 1(c).

Table 1. Data of the GT example

(a) Initial inventory

ltem 123 4 5 6 7 8 9 10 11 12
Initial o 45 12 10 30 55 20 120 90 80
Inventory

(b) Scheduled receipts from external source

It Period
M T2 3 4 s 6 7 8 9 10
1 0 0 0 0 0 0 0 9 0 2
2 5 7 1 9 0 0 0 0 0 0
3 2 4 8 0 0 0 6 0 2 0
4 0 0 15 2 4 8 0 0 0 0
5 1 9 0 2 3 0 0 0 0 0
6 0 15 0 0 2 4 0 0 0 0
7 0 8 0 0 4] 0 0 0 0 0
8 1 6 0 2 1 2 0 0 0 0
9 7 1 9 0 0 0 7 2 8 0
10 3 15 2 4 8 0 (] 2 5 i
11 0 0 5 7 1 9 0 2 3 0
12 4 7 2 8 1 6 0 2 1 2
(¢) Demand
leaf Period
item 1 2 3 4 5 6 7 8 9 10
6 0 0 35 0 55 0 45 20 0 188
7 0 0 0 0 IS5 65 0 36 120 44
8 0 0 0 0 25 0 31 44 9 320
9 0 0 0 0 35 15 0 66 44 9
10 0 0 65 0 35 50 180 720 264 576
11 0 0 50 0 55 70 0 110 480 176
12 0 0 0 0 80 65 0 220 720 264

We assume that the disassembly product structure
is given from the corresponding disassembly plan
with the description of all parts/subassemblies and
disassembly operations. It is assumed that there is
no shortage of the root item (product). That is, the
ordered products can be obtained whenever they are
ordered. The other assumptions made in this prob-
lem, which are similar to those of MRP, are as fol-
lows: (a) the planning horizon is divided into dis-
crete planning periods; (b) demand of leaf items is
given and deterministic; (c¢) backlogging is not al-
lowed and hence demand should be satisfied in
time; (d) the disassembly process is perfect, and
hence any defective parts resulted from disassembly
are not considered; (e) disassembly lead times with
discrete time scale are given and deterministic; and

/B2 RS 2002 EHS ST
(KAIST) 2002 58 3€-4 &

(f) inventory holding costs are computed based on
the end-of-period inventory.

The problem considered here can be formulated
as the following integer program, which is a re-
versed form of the uncapacitated multi-level lot siz-
ing problem (Lee et al. 2001). In the formulation,
without loss of generality, all items are numbered by
the integers 1, 2,...i; — 1, iy, i + 1,...], where the
index i, represents the first leaf item in the disas-
sembly product structure and hence the indices that
are equal to or larger than i; represent leaf items. In
the formulation, the following notations are used.

Parameters

¢, purchase cost of the root item (product) in
period ¢

s; setup cost of item 7

p; disassembly operation cost of item 7
h; inventory holding cost of item i

D;, demand of item i in period ¢

a; number of units of item j obtained by disas-
sembly of one unit of its parent item i

ry, scheduled receipt of item / in period ¢

¢(i) parent of item i (Only one parent exists for
each item in the assembly structure.)

I; disassembly lead time of parent item /

Iy, initial inventory of item i

Decision variables
Z, purchase quantity of the root item in period ¢

Y, =1 ifthere is a setup for item i in period ¢,
and 0 otherwise
Xy amount of disassembly operations of item i

in period ¢
I, inventory level of item 7 at the end of period ¢

Now, the integer program is given below.

... T =17 i-1T IT
Minimize Y Z + 3 Tsi¥e+ T T piXp + T Y il
t=1 i=l =1 i=1 t=1 i=lt=1
subject to
11,=11,,_1+r,-,+Z;-X1, forall t=1,...T (1)
Iy = Ijjp-1 + vie + agiyi - Xp(ir -ty — Xit
forall i=2,...;; —1 and t=1,...T 2)
Lip = L1 +rie +agpiiy,i - X oty i~lpy — Dit
forall i=i,...[and ¢=1,..T 3)
Xiu<M-Y;
forall i=1,...5;,—~1 and ¢t=1,..T 6]
Z; 20 and integers, forall t=1,...T 5
X 20 and integers,
forall i=1,...54~1and t=1,..T 6)

688

I; 20 and integers,
forall i=1,...7 and ¢t=1,...T

Vye {0} forall i=1,..4—land¢=1,...T

Q)
®

The objective function denotes the sum of pur-
chase, setup, disassembly operation, and inventory
holding costs. Constraints (1), (2), and (3) represent
the inventory flow conservation that defines the
inventory level of item i at the end of period ¢. Con-
straint (1) represents the inventory balance of the
root item, That is, at the end of each planning period,
we have inventory what we had the period before,
increased by the scheduled receipt and the pur-
chased quantity, and decreased by the number of
root items disassembled. Constraint (2) represents
the inventory balance of parent items (except for the
root item) that should be disassembled further. Here,
this constraint is the same as (1) except that for each
item, the quantity resulting from disassembling its
parent, multiplied by the yield from its parent, is
used instead of the purchase quantity. Also, the in-
ventory balance of each leaf item is represented by
constraint (3), which is different from (2) in that the
demand requirement (D) is used instead of the
amount of items to be disassembled. Constraint (4),
where M is an arbitrary large number, guarantees
that a setup cost in a period is incurred when there is
at least one disassembly operation at that period.
Finally, the other constraints (5), (6), (7), and (8)
represent the conditions of the decision variables. In
particular, constraint (7) ensures that backlogging is
not allowed. See Lee ef al. (2001) for more details
of the integer programming model.

3. Heuristic Algorithm

The heuristic suggested in this paper consists of
two stages. In the first stage, an initial solution is
obtained in the form of the minimal latest disassem-
bly schedule (using the algorittm of Gupta and
Taleb (1994)). Then, it is improved by iteratively
changing the current disassembly schedule, while
considering the trade-offs among different cost fac-
tors.

Obtaining an initial solution

To obtain an initial ordering and disassembly
schedules, the GT algorithm is used in the paper. In
the algorithm, the demand of items at one level of
the disassembly product structure is translated into
an equivalent demand of the items at the next higher
level, and this is repeated from leaf items to the root
item. See the following procedure for more details.
In the procedure, H; denotes the set of child items of
parent i, and the other notations are the same as
those of the integer programming formulation.

OistargdZatsl/st=Z G uete] 2002 EAHSssaU 2l
el (20024958 34

Procedure 1. (Obtaining Initial Solution)

Step 1. Seti=i - 1, i.e., parent item with the largest
index.

Step 2. For parent item i and its child items, do the
following steps:

1) Set r=1.
2) For each child item j € H,, calculate the
Net Requirement (VR;,) in period £
NRj =max{O,Rjr =1 js1 ~rjs},
where Rj; = Dj ifj = iy,...J (leaf item) and
Rj = X, otherwise.

3) Calculate the disassembly schedule of
parent J in period ¢ — /; using

NRﬂ
Xiy—; = max{ } s
jeH; aj

where [-] is the smallest integer value
that is greater than or equal to -. Here, if
Xis-; >0 and ¢~/ <0, stop. (The prob-
lem is infeasible.)
4) For each child item j, calculate the in-
ventory level in period ¢ ({;) as

max{0,; 1 +rj +aij - X @) — NRjt}

5) Set t=¢+1. If t>T, go to Step 3. Oth-
erwise, go to (2).
Step 3. Set i=i-1. If i=0, calculate the ordering

schedule (Z)) and the inventory level (/;;) of
the root item using the following procedure
and stop. Otherwise, go to Step 2.
1) Set t =1.
2) Calculate the ordering schedule and the
inventory level in period ¢ using
Z, = max{0, X, — I ;-1 ~n,} and
Iy = max{0, 11 -1 +ns — Xur}
3) Set t=r+1.1If t > T, stop. Otherwise, go
to (2).

Now, it is shown that the initial disassembly
schedule obtained by the GT algorithm described in
the above procedure is the minimal latest schedule.
More formally, for a given disassembly schedule X;,
foralli=1,...i; — 1 and ¢t = 1,...T, let us assume that
a new one X; is obtained by changing the disas-
sembly schedule of an arbitrary parent item & in two
periods u# and v, u < v (while the others remain the
same) as follows:

X=X —

Xhw=Xw+a,and

X=Xy, forall t#u,v,
where 0 < & £ Xy, . Then, the disassembly schedule
X is called the Jatest if the new disassembly sched-

689

ule X, is infeasible (due to backlogging). Also, the
disassembly schedule X, is called to be minimal if a
decrease in the amount of disassembly operations
results in backlogging. The following proposition
specifies the characteristic of the initial disassembly
schedule.

Proposition 1. The initial disassembly schedule
obtained by Procedure 1 is the minimal latest one.

Proof. Among the steps of the procedure, the disas-
sembly schedule is determined using the following
formula (Step 2(3)).

NRﬂ
Xi,t—l,' = max{ } ’

JjeH; ajj

i.e., the maximum rounded-up ratio of the net re-
quirement for each child item divided by its yield
from the parent item i. This implies that the net re-
quirement for item 7 in period ¢ is satisfied at 1—/;
(as late as possible) with the minimum amount of
disassembly operations. Here, /; is the disassembly
lead time of parent i. Therefore, Procedure 1 gives
the minimal latest disassembly schedule. Hl

Improvement

In this stage, the initial solution is improved using
trade-offs among different cost factors. That is, the
current disassembly schedule is changed and then
the resulting new ordering and disassembly sched-
ules and inventory levels are evaluated. To do this,
required are the methods to change the current dis-
assembly schedule, to check the feasibility of the
new disassembly schedule, and to calculate new
ordering and disassembly schedules and inventory
levels.

To change the current disassembly schedule, a
backward and extreme move is defined first. Note
that the backward and extreme move is a pairwise
move in that the change is done between amounts of
disassembly operations in two different periods.

Definition 1. For a given disassembly schedule X,
a new one X; obtained from a backward and ex-
treme move of parent item %, between periods u and
v (u <vand X, > 0), is defined as

X = Xbu + Xtw s

X =0, and

X =Xi forall t2u,v,
where the others in the given disassembly schedules
(except for item k) remain the same.

The pairwise move defined above is backward in
that the amount of disassembly operations in the
later period (v) is moved to the earlier period (u),
and is extreme in that the amount of move is the
amount of disassembly operations in the later period.

A Das)/ar 22 Y DaE 2002 ZHBSS M3
BRI 2 R(KAIST) 200214 52 3 2-4

If the initial disassembly schedule is given, it can be
easily seen that a forward move (from u to v) always
results in an infeasible disassembly schedule be-
cause the initial disassembly schedule is the latest
one (Proposition 1). This is the reason that back-
ward moves are considered in this paper. Also, we
consider extreme moves since the setup cost in the
later period can be reduced.

Now, it is needed to check if the new disassembly
schedule after a backward and extreme move results
in backlogging, i.e., checking the feasibility of the
backward and extreme move. In the disassembly
scheduling problem considered here, the feasibility
checking is different according to different type of
items, i.e., root item and non-root parent items. In
the case of the root item, a new feasible disassembly
schedule can always be obtained by changing the
corresponding ordering schedule. On the other hand,
in the case of non-root parent items, a backward and
extreme move may result in backlogging and hence
does not always give a new feasible disassembly
schedule. The following proposition shows a simple
condition to check the feasibility of a backward and
extreme move (for non-root parent items).

Proposition 2. For a given disassembly schedule X,,
a backward and extreme move of non-root parent
item k from periods v to u (u <v) is feasible if

XSl forall t=u,u+l,.v-1,

where I, is the inventory level of item i in period t
under the given disassembly schedule.

Proof. The new inventory level, I}, fort=u,u+1,
...v— 1 of item k, after the backward and extreme
move from periods v to » can be calculated as fol-
lows.
T = Tkt + P + iy k- Xy u—ty — (X + Xiow)
=Ipy— Xy

Tie = Th g1 + 1 + Ao k- Xtk — Xt
=T -1 — Xiw) + 1 + Apiiey k- X1 — Xae
=T + 1 + ap(iy e - X pthyt—i — Xit) — Xy
=l ~Xwy, fOr t=u+1,.v-1

Iy = Ti vt + o + Aoy k- X p(hyv-ie
=Tk v-1 — Xiw) + 1o + Ap(h) k - Xo(h),v-1g
=11+ Fapieyk - Xotov—t — Xiw =Ty

Then, the feasibility condition follows from the con-
streint that Ij, 20 for t=u,u+1,.v~1. (The others
remain the same.) Il

Now, we explain the method to calculate the
new ordering schedule and inventory level after the
current disassembly schedule is changed using a
backward and extreme move. Like the method to
check the feasibility described earlier, there are two

690

cases: root item and non-root parent items. In the
case of the root item, the backward and extreme
move affects the ordering schedule as well as the
inventory levels of the root item and its child items,
while the others remain the same. In this case, the
new ordering schedule and the new inventory levels
after the backward and extreme move (between pe-
riods u and v (u < v)) can be calculated using the
following procedure.

Step 1. Set t=1 and Ijo = ho-

Step 2 Calculate the ordering quantity and the in-
ventory level in period ¢ using

Z; = max{0, Xy, — I 41 —n} and
L= max{O,I{,,_l + 1~ X1e}

Step 3. Set t=r+1. If t> T, stop. Otherwise, go to
Step 2.

On the other hand, in the case of a non-root parent
item, a backward and extreme move affects the in-
ventory levels of the parent item and its child items,
while the ordering schedule and the inventory levels
of the other items remain the same. In this case, the
new inventory levels can be calculated using the
following method. Let the backward and extreme
move be done for item k& between periods » and v
(u <v) . First, the new inventory level of non-root
parent item k after a backward and extreme move
between periods # and v is as follows.

I, =1y forall 1=12,.u4-1v,v+1..T,and
Li=Tw—-Xw forall t=uu+l,.v-1.

The above formulas result from the fact that the
amount of disassembly operations in the later period
v is done in the earlier period # and hence the inven-
tory levels in periods u,u +1,..v—1 decrease by that
amount. Second, the following proposition gives the
method to calculate the new inventory levels of
child items. Note that this method is worth because
it can reduce much computation time to evaluate
new disassembly schedules without recalculating
the inventory levels of all items

Proposition 3. New inventory level 1, of each child
item j, je H; in period t, after a backward and ex-
treme move of non-root parent item i from periods v
tou (u<v) is as follows.
I}; =1lj+ay -X; fort=u+i,..,v+li-1, and
Iy=Iy fort=12, . u+l-1v+},..T,

where aj; is the number of units of child j obtained
by disassembly of one unit of its parent i

Proof. For each child item ; of the non-root parent
item i, je H;, the new inventory level (I;) in each

Watan o atsl /a2 B3 ael 2002 EHSs =W
B2 S | 2R (KAIST) 2002 58 32-4 ¢

period, after the backward and extreme move, can
be calculated as follows.

For t=1,2,...u+1,‘—1, I}; =“~Ij1 .
For t=u+1;,

I}',u+1i =djusli-1 ¥ usl; T aij- Xiy - Xj,u+l,'
=L urlimt Hjurl; + G - (Xiw + Xiv) = X uel;
= Uttt ¥ Vjusli + @ Xiw = X jaur)) + aij - Xiv
= Ij,u+11 + ajj - Xiv
For t=u+l+1,..,v+L -1,
Lo = Ljmt +rju + @ - Xty = Xt
=i +ay-Kiv) + rjp+ay- Xigty = X
= jp+ rptay Xigt; — X)) +ag- X
=1j+aj- Xy

For t=v+l;,

I;',v+l,‘ = I}',v+l,'—1 +Fjvel; Y aij - Xiy _Xj,v+l,-

= jvrli-1 + @ Xp)+rjvet; — X j ey

=L vl ¥ Tjrh; + @i - Xiv — Xjyrt; = 1ol

Then, Iy, =1, for t=v++1,.T.

Then, based on the method to calculate the new
ordering schedule and the new inventory levels, the
amount of cost change after a backward and ex-
treme move can be obtained as follows. In the case
of the root item, the cost change can be calculated
only after we obtain the new ordering schedule and
the new inventory levels. Also, in the case of non-
root parent items, the backward and extreme move
results in the following cost change. First, there is
decrease (improvement) in inventory holding and
setup costs of the non-root parent item in the later
period. More formally,

Ai(u,v)=hi - Xy - (v—u)+si,
where 4;(u,v) is the amount of cost decrease when
there is a backward and extreme move of non-root
parent item i between periods 1 and v. Second, the
backward and extreme move incurs cost increase in
the inventory holding costs of the child items. In
this case, a formal description of the cost increase is
as follows.
Bi(u,v)= X hj-aj-Xi-(v—u),
JeH;

where B;(u,v) is the amount of cost increase of the
backward and extreme move {of a non-root parent
item).

Now, the improvement procedure using backward
and extreme moves is as follows.

Procedure 2. (Improvement)

Step 1. Let the current solution be the initial solu-
tion obtained from Procedure 1.

691

Step 2. Let N denote the set of pairs (7, £) such that
X > 0 in the current disassembly schedule.
For each pair (i, #) € N, find the best back-
ward and extreme move using

u*(i,t) = argmin {B;j(u,t)— 4;(u,t)}
u=1,2,..t-1

If the best move is feasible (proposition 2),
set the best move to be the candidate move
for the pair (i, #). Otherwise, no candidate
move is set to the pair (i, #).

Step 3. If no candidate move exists for each pair (7,
1), stop and save the current solution. Oth-

erwise, select the best candidate move.

Step 4. If there is no improvement in the best candi-
date move, stop and save the current solu-
tion. Otherwise, perform the best candidate
move and update the current solution. Then,

go to Step 2.

4. Computational Experiments

To show the performance of the heuristic sug-
gested in this paper, this section reports the test re-
sults of computational experiments on the modified
version of the GT example described in the problem

“description section. Two cases, time-invariant and

time-variant purchase costs, are considered in the
computational experiments. The time-invariant pur-
chase cost implies that purchase costs are the same
in different planning periods, while the time-variant
costs imply that purchase costs are different accord-
ing to different planning periods over the planning
horizon. In this test, time-variant purchase costs are
considered since the purchase costs of used products
depend highly on the market situation.

Two performance measures were used in the test.
They are percentage deviations from optimal solu-
tion values and CPU seconds. Here, optimal solu-
tion values were obtained by solving the formulated
integer programs directly using CPLEX 6.5, a
commercial integer programming software. In addi-
tion, we report how much improvement was ob-
tained in the improvement stage.

For the test, 10 problems with different cost val-
ues were generated randomly for each of the two
cases on purchase costs. Time-invariant purchase
costs were generated from DU(50, 100), while time-
variant purchase costs were generated from multi-
plying randomly generated coefficients, ranged
from 0.8 1o 1.2, by the time-invariant purchase cost
values. Here, DU(a, b) denotes the discrete uniform
distribution with range [a, b]. Also, setup costs were
generated from DU(100, 1000), and disassembly
operation costs were generated from multiplying
randomly generated coefficients, ranged from 0.05

A3/ DR NS 2002 EASES U
E (T)20022 58 32-4¢

=
2
7]

to 0.1, by the corresponding setup costs. Finally,
inventory costs were generated as 5 to 10% of the
corresponding purchase costs.

Results of the test on the GT examples are sum-
marized in Table 2, which shows the percentage
deviations from optimal solutions. It can be seen
from the table that the heuristic suggested in this
paper gives very near optimal solutions for each of
the two cases on purchase costs, i.e., 0.15% in aver-
age for the case of time-invariant purchase costs and
0.49% in average for the case of time-variant pur-
chase costs. Also, compared to the first stage (GT
algorithm), more than 1% (in average) of improve-
ment was obtained in the improvement stage, which
shows that the improvement procedure is efficient.
Table 2(b) compares the CPU seconds of the two-
stage heuristic and CPLEX 6.5 to obtain optimal
solutions. As expected, CPLEX 6.5 required much
longer computation times than the heuristic. The
interesting point is that the heuristic required very
short computation times, i.e., less than 0.01 seconds.

Table 2. Test results for the GT examples

(a) Percentage deviations from optimal solutions

Time-invariant Time-variant

Problem purchase costs purchase costs
INIF Heur* INI Heur
1 2.50 0.00* 2.97 0.72
2 2.46 0.00* 2.66 0.28
3 1.82 0.22 2.80 0.83
4 0.89 0.17 1.52 0.57
5 1.14 0.30 1.54 0.70
6 0.64 0.00* 0.89 0.17
7 0.94 0.20 1.19 0.45
8 0.99 0.42 1.02 0.44
9 1.09 0.00* 1.63 0.29
10 0.56 0.15 0.85 0.43
Average 1.30 0.15 1.71 0.49

' itial solution by the GT algorithm
! the heuristic suggested in this paper (after improvement stage)
* optimal

(b) CPU seconds

Time-invariant Time-variant

Problem purchase costs purchase costs
P Heur 1P Heur
1 4.6' 0.01 7.0 0.00
2 7.7 0.00** 3.8 0.00
3 179 0.00 16.5 0.00
4 5.4 0.00 12.5 0.00
5 354 0.00 7.6 0.00
6 124 0.00 17.3 0.00
7 24.5 0.01 9.6 0.00
8 29.7 0.00 142 0.01
9 4.5 0.00 4.8 0.00
10 37 0.00 3.6 0.00
See the footnotes of (a).
T CPU second of CPLEX 6.5

** CPU second was less than 0.01 second. (personal computer
with a Pentium processor operating at 800 MHz clock speed)

692

5. Concluding Remarks

We considered the disassembly scheduling prob-
lem for products with assembly structure, which is
the problem of determining the ordering and disas-
sembly schedules of used products, while satisfying
the demands of their parts/components over a given
planning horizon. To solve the problem, a heuristic,
which consists of two stages, is suggested this paper.
Computational experiments showed that the heuris-
tic can give optimal or very near optimal solutions
within a very short computation time.

Because the disassembly scheduling problem con-
sidered in this paper is the most basic form of the
problem, this research can be extended in several
ways. First, it is needed to consider the problem
with general structure, i.e., parts commonality. Sec-
ond, like other disassembly problems, uncertainties,
such as defective parts/components, stochastic de-
mands, are important considerations.

References

Gungor, A. and Gupta, S. M. (1999), Issues in Environ-
mentally Conscious Manufacturing and Product Recov-
ery: a Survey, Computers and Industrial Engineering 36,
811-853.

Gupta, S. M. and Taleb, K. N. (1994), Scheduling Disas-
sembly. International Journal of Production Research 32,
1857-1886.

Lee, D.-H., Kang, J.-G. and Xirouchakis, P. (2001), Dis-
assembly Planning and Scheduling: Review and Further
Research, Journal of Engineering Manufacture 215, 695-
710.

Lee, D.-H., Neuendorf, K.-P. and Xirouchakis, P. (2001),
Disassembly Scheduling for Products with Assembly
Structure: Integer Programming Approach, Technical
Report, Department of Mechanical Engineering, Swiss
Federal Institute of Technology — Lausanne (EPFL), Swit-
zerland.

Lee, D.-H., Xirouchakis, P., Zust, R., (2002), Disassem-
bly Scheduling with Capacity Constraints, to appear in
Annals of the CIRP.

Neuendorf, K-P, Lee, D-H, Kiritsis, D and Xirouchakis, P
(2001). Disassembly Scheduling with Parts Commonality
using Petri-Nets with Timestamps, Fundamenta Infor-
maticae 47, 295-306.

O'Shea, B, Grewal, S. S. and Kaebernick, H. (1998), State
of the Art Literature Survey on Disassembly Planning,
Concurrent Engineering: Research and Application 6,
345-357.

Taleb, K. N. and Gupta, S. M. (1997), Disassembly of
Multiple Product Structures, Computers and Industrial
Engineering 32, 949-961.

Taleb, K. N., Gupta, S. M. and Brennan, L. (1997), Disas-
sembly of Complex Product Structures with Parts and

Materials Commonality, Production Planning and Con-
trol 8, 255-269.

