20024 ¢

g4 =t

vhkim@skku.ac.kr, {youn, choo}(a)ece skku ac.kr

Bi-active Load Balancer for enhancing of scalability and fault-

tolerance of Cluster System

Young Hwan Kim, Hee Yong Youn, Hyun Seung Choo

School of Information and Communications

Sung Kyun Kwan University

Abstract

This paper describes the motivation, design and performance of bi-active Load balancer in Linux Virtual Server. The goal of
bi-active Load balancer is to provide a framework to build highly scalable, fault-tolerant services using a large cluster of
commodity servers. The TCP/IP stack of Linux Kernel is extended to support three IP load balancing techniques, which can
make parallel services of different kinds of server clusters to appear as a service on a single IP address. Scalability is
achieved by transparently adding or removing a node in the cluster, and high availability is provided by detecting node or
daemon failures and reconfiguring the system appropriately. Extensive simulation reveals that the proposed approach im-

proves the reply rate about 20% compared to earlier design.

Key word: cluster, load balancer, httperf, Linux Virtual Server
1. Introduction

With the explosive growth of the World Wide Web, some
popular web sites are getting thousands of hits per second. As
a result, the clients (browsers) experience slow response time
and sometimes ever may not be able to access the web sites.
Clustering with a single-system image view is the most
commonly used approach solving this problem. With a server
cluster, multiple servers behave as a single host from client’s
perspective.

There are two types of clustering architecture: centralized
IP cluster and distributed IP cluster. Centralized IP cluster
consists of one Load Balancer and several real servers. Load
Balancer distributes incoming requests of clients to an appro-
priate real server based on load characteristics. The central-
ized IP cluster includes LVS (Linux Virtual Server) as S/'W
load balancing method, while Magic-Router, Local-Director
and TCP Router are H/W load balancing methods. However,
since this kind of solution creates a single-point-of-failure in
the system, the availability is low. In addition, the scalability
and fault-tolerance is low since the throughput of cluster is
limited by the performance of Load balancer. The load Bal-
ancer bottleneck is more critical compared to the network
bottleneck, and it limits the scalability of such servers in
processing large number of simultaneous client requests.

(11{21(51(7]

In order to solve this problem we propose bi-active that
directs request packets to real servers including itself accord-

381

ing to the scheduling algorithm and makes parallel services
of the cluster to appear as a virtual service on a single IP ad-
dress. This allows simulation highly scalable and fault-
tolerance services. As a result, results show that the proposed
scheme increases reply rate and decreases error rate. The
proposed bi-active load balancer is kind of equalizer which is
a server cluster software such as MP], Ultramonkey allowing
a user level process to intercept network packet.[1]

The rest of this paper is organized as follows: the next
section gives a brief example of load balancers in Linux Vir-
tual Server. Then Section 3 describes the proposed bi-active
load balancer that we have implemented and tested. In Sec-
tion 4 we show the performance of bi-active load balancer.
Finally, in Section 5 we conclude the paper with a summary.

2. Previous Work

In the client/server applications, one end is the client
and the other end is the server, and there may be a proxy
in the middle. Based on this structure, there exist many
ways to dispatch requests to a cluster of servers with dif-
ferent levels. Exiting request dispatching techniques are
TCP Router and DPR (Distributed Packet Routing)[5]

2.1 TCP Router

TCP Router acts as a front-end that forwards requests for
Web service to individual back-end servers of the cluster.

2002 St=Z2XCIBE FN

(=13

=

ut

SYH=2H MO M1

Two features of the TCP Router differentiate 1t from the
Magic Router solution mentioned above. First, rewriting
packets from server host kernels, which is not needed under
the Magic-Router solution. Second, the TCP Router assigns
connections to servers based on the state of the servers. This
means that the TCP router must keep track of connection
assignments. Figure 1 shows the structure of this system.

The architecture uses a TCP-based switching mechanism
to implement a distributed proxy server. The motivation for
this work is to address the performance limitations of client-
side caching proxies by allowing a number of servers to act
as a single proxy. The function of the server is similar to that
of the Magic-Router. However, due to the caching functional-
ity of the distributed proxy, additional issues are addressed
mostly related to the maintenance of cache consistency
among all servers in the cluster. If TCP router breaks down,
whole system dose so. [5]

-1

=

e SQr;rorS
TCP Reuter
Figure 1 : TCP Router.

2.2 DPR (Distributed Packet Rewriting)

Under DPR the structure of any connection is conceptu-
ally a loop passing through three hosts (client and two server
hosts). The entire set may have no host connected to all the
servers. We refer to the first server host to which a packet
arrives as the rewriter, and the second host as the destination.

kiran

=

b ¥4

Serverd

Distributed Packet Rewriting

Figure 2 : DPR.
The DPR scheme assumes that requests arrive at the indi-
vidual hosts of the server. This can occur in a number of
ways. The simplest approach (which we currently use) is to

382

distribute requests using Round-Robin DNS. Although re-
quests may well arrive in a unbalanced manner because of the
limitations of RR-DNS, The hosts experience balanced de-
mands for service because of redistribution of the requests
performed by DPR. As shown in Figure2.[5]

3. The Proposed Bi-active Load Balancer

We propose bi-active Load Balancer in the distributed
packet LVS to enhance fault-tolerance and scalability, which
combines the centralized IP cluster and the distributed IP
cluster mechanism. The incoming packets from router are
multicast to the Load Balancers. The bi-active Load Balancer
achieves the load balancing using the Packet Accept Load
Balancing Algorithm. The bi-active Load Balancer passes
packets to real servers including itself and stand-by server for
fault-tolerance. For example, if there are two load balancers
and two real servers, four servers can service the clients.

Bi-active Load Balancer in the distributed packet LVS
acts as follows: First, The load balancers have two Ethernet
Cards, one for load balancer cluster, the other for real server
cluster. Load balancers have real IP and virtual IP, and thus
DR (Direct Routing) and NAT (Network Address Transla-
tion) method are used for LVS.

(a) Client sends request to the Apache Web server, which is
set by Virtual IP address.

(b) The Ethernet addresses of Load balancers acting as host
load balancers are selected by heartbeat daemon.

(c) After the Load balancer accepts the packet, it decides to
process it or passes it to real server.

(d) If Load Balancer decides to accept the packets, Load Bal-
ancer directly starts to serve the client. If Load balancer
distributes the packet to real server, real server starts to
serve the client through load balancer using NAT (Net-
work Address Translation) for packet forwarding. Figure
3 shows the proposed system with Bi-active Load Bal-
ance.

Roul-Servesy

Real-Sarver2

: Reslgerver3
I
A 1
1 "~ S Resi Sarvor = Rl Sarverin
'] PR(Direct routing) NAT routing 8
[A

Figure 3 : Bi-active Load balancer.

In this mechanism, load balancer controls sub-clusters
and distribute packets. In addition, load balancer acts as real

2002 3 SIAHEHSS ENHSYH=FT WA H1S

server if no packet comes in.

Bi-active Load balancers use DR if the distributed packet
to load balancers, while NAT if the packet is distributed to
real servers. As a result, the packets in load balancer can be
processed faster than in real server.

The main advantage of the proposed mechanism is avail-
ability, fault tolerance, improved scalability, and easy imple-
mentation. The sub-clusters controlled by each load balancer
are independent to each other. So, even though one of the
Load Balancers fails, the others can continuously provide the
service. As a result, the availability of the cluster system can
be significantly increased. In addition, since a sub-cluster can
be easily added as needed, the scalability is high.

4. Performance Evaluation
4.1 Software Configuration
4.1.1 Client Workload Generator

We use httperf[3][4], a tool for measuring web server per-
formance. It provides a flexible facility for generating various
HTTP workloads and measuring server performance. The
focus of httperf is not on implementing one particular
benchmark but on providing a robust, high-performance tool
that facilitates the construction of both micro- and micro-
level benchmarks. The three distinguishing characteristics of
httperf are its robustness, which includes the ability to gener-
ate and sustain server overload, support for the HTTP/1.1
protocol, and its extensibility to new workload generators and
performance measurements.

4.1.2 Testing Methodology

The objective of this section is to offer an accurate and
clear understanding of how the experiment is conducted. Our
primary goal is to stress the LVS (i.e. the bi-active load bal-
ancer node), and thus we keep our workload as simple as
possible. The clients are assumed to generate requests based
on the HTTP1.1 protocol. Each request is for the same web
page to ensure that the web data would remain in the server’s
file cache, thereby eliminating any idiosyncrasies of file I/O
on the web servers. The requested page is smaill enough (75.0
bytes) to be transmitted in a single packet without the need
for fragmentation (given an MTU of 1500 bytes).

4.1.2.1 Apache Tuning

The Apache configuration file on each load balancer and
real server is altered to disable logging and to keep a suffi-
cient number of httpd daemons available to minimize over-
head in responding to client requests.
4.1.2.2 Linux Tuning

The amount of socket memory on each system (client,
load balancer and real server) is increased to 5Mbyte to allow
a large TCP window size. In order to maximize the number
of concurrent connections a given client could create ii was
necessary to increase the number of per-process file descrip-

383

tors as well as system wide limit on files and local port num-
ber.

4.1.2.3 LVS Configuration

All web servers are essentially of the same type of
hardware, and thus we configure them with equal weight. All
the clients request the same web content, and we employ
round robin scheduling algorithm. In this LVS, we use ultra
monkey 1.0.1 based on kernel 2.2 that creates load balance
and highly available services on a local area network using
open source components on the Linux operating system.
There are important configuration items used for load balan-
cer services. If we use two bi-active load balancers (one acts
as host server, the others act as stand-by server), we need
three IPs (one for virtual IP, and the others for bi-active load
balancer). Hence we use IP alias supported by Linux Kernel
2.2.14. The actual configuration used is follows: [1][{5][6][7]

#Setting IP alias ...
echo "Setting 203.252.46...."
/sbin/ifconfig lo 127.0.0.1
/sbin/ifconfig ethO up
/sbivifconfig eth0 203.252.46.193
/sbin/ifconfig eth0:0 203.252.46.250
/sbin/ifconfig ethl up
/sbin/ifconfig ethl 192.168.0.10
/sbin/ifconfig eth1:0 192.168.0.240
#8etting IP route
echo "setting IProute....."
/sbin/route add -net 127.0.0.0
/sbin/route add -net 203.252.46.0 dev ethO
/sbin/route add -net 192.168.0.0 dev ethl
/sbin/route add -host 203.252.46.193 eth0
/sbin/route add -host 203.252.46.250 ¢th0:0
/sbin/route add -host 192.168.0.10 eth1l
/sbin/route add -host 192.168.0.240 eth1:0
/sbin/route add default gw 203.252.46.1

4.2 Hardware Configuration
4.2.1 Bi-active Load balancer

The hardware used by the LVS load balancer was chosen
because we felt it was representative of a typical system on
the market today. The systern has 256MB SDRAM, 700MHz
Intel Pentium III CPU. The load balancer is equipped with
two 3Com 3C905B-TXNM FAST ETHERLINK XL PCI
Ethernet cards, each connected to 3Com 100MB switching
HUB.

4.2.2 Real Servers

There are two real servers all of them contained a
500MHz Intel Pentium III CPU. Each system was booted
with one 256MB of SDRAM and 3Com 3C905B-TXNM
FAST ETHERLINK XL PCI Ethernet card connected to the
3Com 100 MB switching HUB.

4.2.3 Client
There are three sets of clients containing 500MHz Intel

Pentium III CPU, 128MB of RAM and REALTEK
RTL8139C 100MB Ethernet card.

20024 SIRFEHIUSES =)

SadH=328 HMoA HM1IsS

4.3 Results

The results here are based on a series of test runs as
shown in Table I. Some additional workloads were applied to
some specific configurations in order to gain comprehensive
understanding of a particular result.

Table I : LVS Test Matrix

25
20

Error Rate[%]

Load balancer Real Server Config. Client ° N o
Num. Bi-active Num. used Num. s
Connaction Rate
1 o 1 o NAT,DR | 3(httperf) [-=—Real Server ¥2 —=— Load Balancer + Real Server #2 |
1 X 1 (4] NAT 3(httperf) Figure 7: Error rate with two bi-active load balancer and real server
2 0o 2 0o NAT,DR | 3(httperf) .
3 % 3 o NAT Shtiper Figure 6 and 7 show that error rate decrease up to 18.9%.

As shown in Table I, We tested four cases, and the result
shows that the proposed bi-active load balancer is more effi-
cient than without it in terms of reply rate and error rate. Re-
fer to Figure 4, 5, 6, and 7.

1400 ot
,_.J
1200 e
4 e
= 1000 . et
= /
2 800 o
2 s00 ..
& el
400 e
s
200 7
-
o
N & & N D
OSSO Y ~ E \,\@ \50 ’@S \,\@ 'SO

Connection Rate

[--+—Real Server #1_~w-—Load Batancer + Resl Server #1 |

Figure 4: Reply rate with one bi-active Load balancer and real server Reply rate.

1800
1600
1400
1200
1000

600
400
200

Reply Ratel 1/5]

ol g o S S
S & H & \\@ < S0 _(\QQ' ’S@

Connection Rate

[—+=Real Server#2 —=— Load Balancer + Rea Server #2 |

Figure S : Reply rate with two bi-active Load balancer and real server

Observe that reply rate increases up to 21.6% compared to
existing approach.

60

50
o /

30 |

Ervor Rate[%]

o e) e o
K3 o« ES Y & _\,\Q \.‘@ \‘9@‘ _\,\@ \q@

Connection Rate

[—+—Real Server #1 - Load Balancer + Real Server #1 |

Figure 6 : Error rate with one bi-active Load balancer and real sever

384

4. Conclusion and Future Work

The proposed bi-active load balancer with Linux Virtual
Server has been identified to be effective. One of the most
valuable lessons is the ability to generate a high work load
with a limited number of client machines. Our initial attempts
were throttled by system resource limitations and thus we
could not open more than 400 concurrent connections. After
a substantial debugging effort, we were able to increase this
to approximately 1500 concurrent connection.

A significant number of LVS features would benefit from
more performance and scalability analysis in addition to the
analysis we have done. It would be interesting to see how
LVS behaves under a more varied workload instead of the
static data we used in this report. This would enable one to
study the effects and benefits of the various scheduling algo-
rithms offered.

We skipped testing other scheduling methods (i.e. DR,
Tunneling except for NAT). Perhaps LVS is more efficient
with other scheduling methods. There is also a lack of stan-
dardization on testing and evaluating bi-active load balancer
in general.

5. References

[1] Wensong Zhang. Linux Virtual Servers for Scalable Net-
work Services.
http://www.linuxvirtualserver.org/ols/lvs.ps.gz

[2] Wensong Zhang. LVS Development page.
http://www.linuxvirtualserver.org/deployment.html

[3] Patrick O’Rourke, Mike Keefe: Performance Evaluation
of Linux Virtual Server

[4] R. Fielding, J. Gettys, J. Mogul, H.Frystuk, and T. Bern-
ers-

Lee.ew =<O..0.. OO, |.00fcl _. I

Intenet Engineering Task Force, January 1997.
[5] Azer Bestavros, Mark Crovella, and Jun Liu

0.5l _.00
[~ ©n £O_G.o®s — 90 o £<=<06f 50 0 <

0100 <00, 2 PRl 0

[6] Linux IP Masquerade Resource.
See http://ipmasq.home.ml.org

[7] Wensong Zang, Shiyao jin and Qanyuan Wu, “Linux Vir-
tual Server for Scalable Network Services” Ottawa Linux
Symposium 2000, July 19-20nd, 2000

