연수보고

Steadman · Hawkins Sports Medicine Foundation

김 영 규 가천의과대학부속 길병원 정형외과교실

I. Biomechanics Research Laboratory

Helping physicians to make clinical decisions

- Human performance
- Mechanical testing
- Computer modeling

Performance Studies

- Provide insight into the basic mechanisms underlying performance
 - Performance enhancement
 - Identify injury mechanisms
- Localize deficits more precisely and assist in planning interventions
- Allows an accurate assessment of the efficacy of a specific intervention

Performance Tasks

- Gait, Jumping, Landing, Cutting
- Throwing, Golfing, Rehab

Methods

- High speed video : Angle
- Force measurement: Vertical ground reaction forces
- Inverse dynamics: Torque
- Electromyography

II. Upper Extremity Biomechanics

Outline of Presentation

10th Annual Congress of K.S.E.S., March 22nd, 2002 제 10차 대한 견·주관절 학회 학술대회, 2002, 03, 22

- Performance studies
- Point cluster technique
- Kinematics of the U/E using bone pins

Performance Studies

- Major League Pitchers
- Little League Pitchers
- MLB Mound Height
- NFL Quarterbacks
- High School Pitchers?

Little League Pitcher Study

- Rationale: Determine if pitching biomechanics cause soft tissue and/or bony adaptations of the shoulder
- Methods: ROM, MRI, and pitching biomechanics

Point Cluster Technique: Rationale

- To understand motion at the joint, need better description of bony motion
- Want to eliminate effects of skin motion on resulting bony kinematics

Shoulder Dissection Study

- Anatomical dissection of muscles of the shoulder girdle.
 - Muscle lengths, Volume, pennation angles
 - Tendon lengths Input to Current Model

Shoulder Bone Pin Study

- Rationale
 - Kinematics of shoulder girdle during simple motions not well understood
 - Many skin marker techniques exist, but best technique is not established
- Methods
 - Insert bone pins with markers attached to shoulder girdle bones
 - Apply surface markers on the skin
 - Subject performs simple motions
 - Compare date from surface markers to that from bone pins
- Placing the pins: Five major articulating bones
 - Clavicle distal 3rd
 - Scapula medial spine
 - Humerus distal deltoid

10th Annual Congress of K.S.E.S., March 22nd, 2002 제 10차 대한 견 주관절 학회 학술대회, 2002, 03, 22

- Radius styloid
- Sternum
- Secondary Goal
 - Identify shoulder motions for the model to use as constraints
- Reconstructing Bony Geometry
 - External forces : GRF's
 - Kinematics : Bony motion
 - Bone geometry
 - CT scan in 1mm slices
 - All segments with pins

Determine Muscle Geometry

- 1) External forces
- 2) Kinematics
- 3) Bone geometry
- 4) Muscle geometry
 - Substitute our subject's CT data for visual human project geometry
 - Constrain the model with our measured kinematics

Future Work

- Better quantification of upper extremity motion
- Improved model of shoulder girdle
- Compute forces in rotator cuff muscles, tendons, and capsule in static positions, rehabilitation exercises, etc.

Modeling

- Model: mathematical representation of bone, ligament, and muscle used to calculate loads in the bones and soft-tissues during rehabilitation exercise and the activities of daily living
- Biomechanical extension of methods developed for the analysis of complex systems such as robotics and spacecraft

Future Directions

- 3D model of the upper extremity including the muscles spanning the shoulder, elbow, and wrist
- Possible applications
 - Calculate the loads at shoulder for rehabilitation exercises

10th Annual Congress of K.S.E.S., March 22nd, 2002 제 10차 대한 견·주관절 학회 학술대회, 2002, 03, 22

- Show how insufficiency of the subscapularis muscle affects shoulder joint load
- Development
 - Move the existing University of Texas model to an accessible computer platform
 - Verify model kinematics and muscle parameters using data from the upcoming bone-pin study at SHSMF

II. Clinical Approaches:

Current Recommendations of the Glenohumeral Instability

The Instability

- Little Instability(eg. Little Bankart) = Little Operation (Arthroscopic)
- Big Instability = Big Operation

Anterior Instability

• Arthroscopic labral repair (if necessary)

(eg. Big Bankart and Capsular Laxity)

- Arthroscopic capsular plication of inferior and middle glenohumeral ligaments
- Thermal capsulorraphy (grid or cornrow pattern)

Revision Anterior Instability

- Arthroscopic operation if failed open or first revision
- Open operation if failed arthroscopic or multiple revision

Postop. Arthroscopic Anterior Instability

- Weeks 0-3: No Rehab
- Weeks 4-5: Phase I (ER 0 and ER 30)
- Weeks 6-7 : Phase II
- Weeks 8-12 : PhaseIII

Posterior Instability

- Arthroscopic labral repair (if necessary)
- Arthroscopic capsular plication(usually 2 sutures)
- Thermal capsulorraphy

Revision posterior instability

- Arthroscopic operation if failed open or first few revisions
- Open procedure only if capsular tissue extremely poor quality and patulous

10th Annual Congress of K.S.E.S., March 22nd, 2002 제 10차 대한 견·주관절 학회 학술대회, 2002, 03, 22

Postop. Arthroscopic Posterior Instability

• Weeks 0-6: No Rehab in Gunslinger

• Week 7 : Phase I (scapular plane elevation only)

Week 8 : Phase IIWeeks 9-12 : Phase III

Multidirectional Instability

• Arthroscopic anterior and posterior capsular plication

Anterior and posterior termal capsulorraphy

• Occasionally augment open shift with arthroscopic thermal and/or suture plication

Revision MDI

• Open inferior capsular shiftPostop. Arthroscopic MDI

• Occasionally augment open shift with arthroscopic thermal and/or suture plication

Postop. Arthroscopic MDI

• Weeks 0-8: No Rehab (Gunslinger)

● Weeks 9-10: Phase II

(No Passive ROM or stretching and scapular plane elevation only)

● Week 11 : Phase III

ARTHROSCOPIC REPAIR

• Anterior = High Failure Rates

- Walch (Arthroscopy, 1995): 49% poor, 44% recurrence

Koss (AJSM, 1997)
Geiger (CORR, 1997)
Buss (AJSM, 1996)
30% recurrence
44% recurrence
33% recurrence

- Recent advent of arthroscopic techniques for shoulder instability (ie. Bankart repair) have high failure rates Why?
- Higher failure with arthroscopic Bankarts are due to inability to effectively address capsular laxity

Thermal Capsulorraphy

- Advantages of arthroscopic procedure
- Technically easy

10th Annual Congress of K.S.E.S., March 22nd, 2002 제 10차 대한 견·주관절 학회 학술대회, 2002, 03, 22

Decrease capsular laxity

Thermal Capsulorraphy

- Lu and Markel, 2000: return to normal histology by 6 weeks after procedure
- Wallace, 2000: initial shortening augmented during period of immobilization
- ?? Long-term biomechanical property of heated capsular tissue??

Role of Immobilization

- Cannot be overemphasized
 - Hayashi, 1996-1999
- Length of time controversial
- Most shrinkage within first 6 weeks
 - Lu and Markel, 2000

Thermal Capsulorraphy in the Throwing Athlete

- Augment arthroscopic treatments
- No violation of the subscap
- ?? Role of anterior laxity in SLAP lesions and Internal Impingement??

IV. Impingement Versus Instability: A Diagnostic Dilemma