Complete convergence for weighted sums of AANA random variables

TAE-SUNG KIM1 AND MI-HWA KO2

Abstract

We study maximal second moment inequality and derive complete convergence for weighted sums of asymptotically almost negatively associated(AANA) random variables by applying this inequality.

2000 Mathematics Subject Classification: 60F05

Keywords: Complete convergence; Weighted sum; Negatively associated; Asymptotically almost negatively associated.

1. Introduction

Recall that a finite family $\{X_i, 1 \leq i \leq n\}$ is said to be negatively associated(NA) if for any disjoint subsets $A, B \subset \{1, \dots, n\}$ and any real coordinatewise nondecreasing functions $f: R^A \to R$ and $g: R^B \to R$, $Cov(f(X_i, i \in A), g(X_j, j \in B)) \leq 0$ (see Joag-Dev and Proschan(1983)). Matula(1992) has established a maximal inequality for negatively associated(NA) sequences. By inspecting the proof of Matula's(1992) maximal inequality, Chandra and Ghosal(1996) found that one can also allow positive correlations provided they are small. A sequence $\{X_n, n \geq 1\}$ of random variables is called asymptotically almost negatively associated(AANA) if there is a nonnegative sequence $q(m) \to 0$ such that

$$Cov(f(X_m), g(X_{m+1}, \dots, X_{m+k}))$$

 $\leq q(m)(var(f(X_m))var(g(X_{m+1}, \dots, X_{m+k})))^{1/2}$ (1)

for all $m, k \ge 1$ and for all coordinatewise increasing continuous functions f and g whenever the right side of (1) is finite.

In this paper we study complete convergence for weighted sums of AANA sequence, which has never been studied previously in the literature.

¹Professor, Department of Mathematics, WonKwang University Iksan, Jeonbuk 570-749 E-mail: starkim@wonkwang.ac.kr

 $^{^2} Instructor,$ Department of Mathematics, WonKwang University Iksan, Jeonbuk 570-749 E-mail : songhack@wonkwang.ac.kr

2. Results

Lemma 2.1 Let $\{X_n, n \geq 1\}$ be a sequence of asymptotically almost negatively associated (AANA). Then $\{f_n(X_n), n \geq 1\}$ is still a sequence of AANA random variables, where $f_n(\cdot), n = 1, 2, \cdots$, are nondecreasing functions.

Lemma 2.2 (Chandra and Ghosal (1996)) Let X_1, \dots, X_n be mean zero, square integrable random variables such that (1) holds for $1 \leq m < k+m \leq n$ and for all coordinatewise nondecreasing continuous functions f and g whenever the right-hand side of (1) is finite. Let $A^2 = \sum_{m=1}^{n-1} q^2(m)$ and $\sigma_k^2 = EX_k^2$, $1 \leq k \leq n$. Then we have

$$E(\max_{1 \le k \le n} \sum_{i=1}^{k} X_i)^2 \le (A + (1 + A^2)^{1/2})^2 \sum_{k=1}^{n} \sigma_k^2.$$
 (2)

Theorem 2.3 Let $\{X_k, k \geq 1\}$ be a sequence of AANA random variables with $EX_k = 0$ and $EX_k^2 < \infty$ for all $k \geq 1$. Let $A^2 = \sum_{m=1}^{n-1} q^2(m)$ and let $\{a_{nk}, 1 \leq k \leq n, n \geq 1\}$ be an array of real numbers satisfying the condition

$$\sum_{k=1}^{n} a_{nk}^2 = O(n^{\delta}) \quad as \quad n \to \infty \quad for \quad some \quad 0 < \delta < 1. \tag{3}$$

Assume that

$$\sum_{m=1}^{\infty} q^2(m) < \infty. \tag{4}$$

Then, $\forall \epsilon > 0$ and δ' such that $\delta < \delta' \leq 1$

$$\sum_{n=1}^{\infty} n^{-\delta'} P(\max_{1 \le k \le n} | \sum_{i=1}^{k} a_{ni} X_i | > \epsilon n^{1/2}) < \infty.$$
 (5)

Proof. To prove (5) it suffices to show that

$$\sum_{n=1}^{\infty} n^{-\delta'} P(\max_{1 \le k \le n} | \sum_{i=1}^{k} a_{ni}^{+} X_i | > \epsilon n^{1/2}) < \infty \qquad \forall \ \epsilon > 0,$$
 (6)

$$\sum_{n=1}^{\infty} n^{-\delta'} P(\max_{1 \le k \le n} | \sum_{i=1}^{k} a_{ni}^{-} X_i | > \epsilon n^{1/2}) < \infty \qquad \forall \ \epsilon > 0,$$
 (7)

where $a_{ni}^+ = a_{ni} \vee 0$, $a_{ni}^- = (-a_{ni}) \vee 0$. We need only to prove (6), since the proof of (7) is analogous. From Lemma 2.1 $\{a_{ni}^+ X_i, 1 \leq i \leq n, n \geq 1\}$ is an AANA sequence, and

hence by applying we have Lemma 2.2

$$\sum_{n=1}^{\infty} n^{-\delta'} P(\max_{1 \le k \le n} | \sum_{i=1}^{n} a_{ni}^{+} X_i | > \epsilon n^{1/2})$$

$$\leq \epsilon^{-2} \sum_{n=1}^{\infty} n^{-1-\delta'} (A + (1 + A^2)^{1/2})^2 \sum_{k=1}^{n} a_{nk}^2 E X_k^2 =: I.$$

Note that conditions (3) and $EX_k^2 < \infty$ imply

$$\sum_{k=1}^{n} a_{nk}^2 E X_k^2 = O(n^{\delta}) \quad as \quad n \to \infty.$$
 (8)

Hence, by (4) and (8) we have

$$I << (A + (1 + A^2)^{1/2})^2 \sum_{n=1}^{\infty} n^{-(1+\delta'-\delta)} < \infty \quad for \ \ 0 < \delta < \delta' \le 1,$$

where $a \ll b$ means a = O(b). The proof is completed.

Theorem 2.4 Let $\{X, X_k, k \geq 1\}$ be sequence of identically distributed AANA random variables with EX = 0, $EX^2 < \infty$. Let $A^2 = \sum_{m=1}^{n-1} q^2(m)$ and let $\{a_{nk}, 1 \leq k \leq n, n \geq 1\}$ be an array of real numbers satisfying (3). If (4) and (5) hold then for some δ' such that $\delta < \delta' \leq 1$

$$\sum_{n=1}^{\infty} n^{-\delta'} \sum_{j=1}^{n} P(|a_{nj}X_j| > n^{1/2}) < \infty.$$
 (9)

Proof. From (5) we obviously get

$$\sum_{n=1}^{\infty} n^{-\delta'} P(\max_{1 \le j \le n} |a_{nj} X_j| > n^{1/2}) < \infty , \qquad (10)$$

$$P(\max_{1 \le i \le n} |a_{nj}X_j| > n^{1/2}) \to 0 \text{ as } n \to \infty.$$
 (11)

Note that

$$P(\max_{1 \le j \le n} |a_{nj}X_j| > n^{1/2}) = \sum_{j=1}^n P(|a_{nj}X_j| > n^{1/2}, \max_{1 \le i \le j-1} |a_{ni}X_i| \le n^{1/2}).$$

Hence, we deduce that

$$\sum_{j=1}^{n} P(|a_{nj}X_{j}| > n^{1/2}) = P(\max_{1 \le j \le n} |a_{nj}X_{j}| > n^{1/2})$$

$$+ \sum_{j=1}^{n} P(|a_{nj}X_{j}| > n^{1/2}, \max_{1 \le i \le j-1} |a_{ni}X_{i}| > n^{1/2}).$$
(12)

Also, we have

$$\sum_{j=1}^{n} P(|a_{nj}X_{j}| > n^{1/2}, \max_{1 \le i \le j-1} |a_{ni}X_{i}| > n^{1/2})$$

$$= \sum_{j=1}^{n} \{ E[I(|a_{nj}X_{j}| > n^{1/2})I(\max_{1 \le i \le j-1} |a_{ni}X_{i}| > n^{1/2})]$$

$$-EI(|a_{nj}X_{j}| > n^{1/2})EI(\max_{1 \le i \le j-1} |a_{ni}X_{i}| > n^{1/2}) \}$$

$$+ \sum_{j=1}^{n} \{ EI(|a_{nj}X_{j}| > n^{1/2})EI(\max_{1 \le i \le j-1} |a_{ni}X_{i}| > n^{1/2}) \}$$

$$\leq E \sum_{j=1}^{n} [I(|a_{nj}X_{j}| > n^{1/2}) - P(|a_{nj}X_{j}| > n^{1/2})]I(\max_{1 \le i \le j-1} |a_{ni}X_{i}| > n^{1/2})$$

$$+ \sum_{j=1}^{n} P(|a_{nj}X_{j}| > n^{1/2})P(\max_{1 \le i \le n} |a_{ni}X_{i}| > n^{1/2}) = II + III.$$
(13)

Define

$$Y_{nj} = \begin{cases} a_{nj}X_j, & if \ a_{nj} \ge 0, \\ -a_{nj}X_j, & if \ a_{nj} < 0. \end{cases}$$

Then $\{Y_{nj}, 1 \leq j \leq n, n \geq 1\}$ and $\{I(Y_{nj} > n^{1/2})\}$ are AANA by Lemma 2.1. By the Cauchy-Schwarz inequality and Lemma 2.2,

$$|II| = |E \sum_{j=1}^{n} [I(|a_{nj}X_{j}| > n^{1/2}) - P(|a_{nj}X_{j}| > n^{1/2})]$$

$$\times I(\max_{1 \le i \le j-1} |a_{ni}X_{i}| > n^{1/2}) |$$

$$\leq [E(\sum_{j=1}^{n} I(|a_{nj}X_{j}| > n^{1/2}) - EI(|a_{nj}X_{j}| > n^{1/2}))^{2}$$

$$\times E(I(\max_{1 \le i \le n} |a_{ni}X_{i}| > n^{1/2}))^{2}]^{1/2}$$

$$= [Var(\sum_{j=1}^{n} I(|a_{nj}X_{j}| > n^{1/2}))P(\max_{1 \le i \le n} |a_{ni}X_{i}| > n^{1/2})]^{1/2}$$

$$\leq [2\{Var[\sum_{j=1}^{n} I(Y_{nj} > n^{1/2})] + Var[\sum_{j=1}^{n} I(Y_{nj} < -n^{1/2})]\}$$

$$\times P(\max_{1 \le i \le n} |a_{ni}X_{i}| > n^{1/2})]^{1/2}$$

$$\leq [8\{\sum_{j=1}^{n} P(Y_{nj} > n^{1/2}) + \sum_{j=1}^{n} P(Y_{nj} < -n^{1/2})\}$$

$$\times P(\max_{1 \le i \le n} |a_{ni}X_{i}| > n^{1/2})(A + (1 + A^{2})^{1/2})^{2}]^{1/2}$$

$$\leq \frac{1}{2} \sum_{j=1}^{n} P(|a_{nj}X| > n^{1/2}) + 4(A + (1 + A^{2})^{1/2})^{2}
\times P(\max_{1 \leq i \leq n} |a_{ni}X_{i}| > n^{1/2})$$
(14)

by $\sqrt{ab} \le \frac{a+b}{2}$. From (12)-(14) we have

$$\frac{1}{2} \sum_{j=1}^{n} P(|a_{nj}X| > n^{1/2})$$

$$\leq \{1 + 4(A + (1 + A^{2})^{1/2})^{2}\} P(\max_{1 \leq i \leq n} |a_{ni}X_{i}| > n^{1/2})$$

$$+ \sum_{j=1}^{n} P(|a_{nj}X| > n^{1/2}) P(\max_{1 \leq i \leq n} |a_{ni}X_{i}| > n^{1/2})$$
(15)

and from (11) we get

$$\sum_{j=1}^{n} P(|a_{nj}X| > n^{1/2}) << P(\max_{1 \le i \le n} |a_{ni}X_{i}| > n^{1/2}), \tag{16}$$

for sufficiently large n. Therefore, from (10) and (16) the desired result (9) follows.

References

- Chandra, T. K., Ghosal, S. (1996 a) Extensions of the strong law of large numbers of Marcinkiewicz and Zygmund for dependent variables, Acta. Math. Hungar. 32 327-336.
- [2] Hsu, P. L. and Robbins, H. (1947) Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci 33 (2) 25-31.
- [3] Joag-Dev, K. Proschan, F. (1983) Negative association of random variables with applications, Ann. Statist. 11 286-295.
- [4] Matula, P. (1992) A note on the almost sure convergence of sums of negatively dependent random variables, Statist. Probab. Lett. 15 209-213.