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Complete convergence for weighted sums of AANA
random variables

TAE-SUNG KiM! AND MI-Hwa Ko?

Abstract

We study maximal second moment inequality and derive complete convergence for
weighted sums of asymptotically almost negatively associated(AANA) random variables
by applying this inequality.
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1. Introduction

Recall that a finite family {X;,1 < i < n} is said to be negatively associated(NA)
if for any disjoint subsets A, B C {1,---,n} and any real coordinatewise nondecreasing
functions f : R4 — R and g : R® — R, Cov(f(Xi,i € A),9(X;,j € B)) < 0 (see
Joag-Dev and Proschan(1983)). Matula(1992) has established a maximal inequality for
negatively associated(NA) sequences. By inspecting the proof of Matula’s(1992) maximal
inequality, Chandra and Ghosal(1996) found that one can also allow positive correlations
provided they are small. A sequence {Xy,,n > 1} of random variables is called asymptot-
ically almost negatively associated(AANA) if there is a nonnegative sequence g(m) — 0

such that

Cov(f(Xm), 9(Xms1,- -+, Xm+k))
< g(m)(var(f (Xm))var(§(Xmt1,- -+ » Xm+k))) 2 )

for all m, k > 1 and for all coordinatewise increasing continuous functions f and g when-
ever the right side of (1) is finite.
In this paper we study complete convergence for weighted sums of AANA sequence,

which has never been studied previously in the literature.
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2. Results

Lemma 2.1 Let {X,,n > 1} be a sequence of asymptotically almost negatively asso-
ciated(AANA). Then {fn(X,),n > 1} is still a sequence of AANA random variables,

where f,(-),n = 1,2,---, are nondecreasing functions.

Lemma 2.2 (Chandra and Ghosal (1996)) Let X, --,X, be mean zero, square
integrable random variables such that (1) holds for 1 < m < k+ m < n and for all
coordinatewise nondecreasing continuous functions f and g whenever the right-hand side
of (1) is finite. Let A% = 37" ¢*(m) and 02 = EX2, 1 < k < n. Then we have

k n

E(lrggg X) < (A+ (14 A%)1/?2)? Z (2)

Theorem 2.3 Let {Xx, k > 1} be a sequence of AANA random variables with EXy = 0
and EX2 < 0o for all k> 1. Let A2 =37 ¢*(m) and let {ank,1 < k< n,n>1}

be an array of real numbers satisfying the condition

Sr_1a%, =0(n%) as n— oo for some 0<6<1. (3)
Assume that
Y- ¢*(m) < co. (4)
m=1

Then, V € > 0 and 8 such that § <4 <1

oo

-& 1/2
> a8 P KM[Z%X [> enl/?) < co. (5)

n=1
Proof . To prove (5) it suffices to show that

(o]

5 1/2 0
Zln P(lrgcaéc |Za Xi|>en'/?) <0 Ve>0, (6)
oo k

5 - X, 1/2 0
; P(lx?kax | gale [>en'/?) < o0 Ye>0, (7N

where a}; = an; V0, a,; = (—an;) V0. We need only to prove (6), since the proof of

(7) is analogous. From Lemma 2.1 {a+ X;,1 <i<n,n>1}isan AANA sequence, and
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hence by applying we have Lemma 2.2

0o n
_5' + v, 1/2
Zn P(lglka%(n | ZamX, |> en'/?)
n=1 i=1
[ , n
S 1 A X T
n=1 k=1

Note that conditions (3) and EX2 < co imply
n
ZaikEX,f =0(®%) as n— . (8)
k=1
Hence, by (4) and (8) we have

I << (A+(1+A4%)%)?2 Zn‘“*““‘” <oo for 0<6<d <1,

n=1

where a << b means a = O(b). The proof is completed.

Theorem 2.4 Let {X, X,k > 1} be scquence of identically distributed AANA random
variables with EX =0, EX? < co. Let A2 = 30" ¢?(m) and let {ank,1 <k <n,n >
1} be an array of real numbers satisfying (3). If (4) and (5) hold then for some &' such
that § <6 <1

3 1" 3 P(l aniX; |> n?) < co. )
n=1 j=1

Proof. From (5) we obviously get

o0

3 n=¢ P(max | anX; [>nY/?) < oo, (10)
ot 1<j<n
P(max | anX; [>n'/?) =0 as n— oo (1)

Note that
n

P(max | an;X; |>n'/?) = Z;P(I an; X; |> n'/?, | | aniXi |[< n?/?).
iz

Hence, we deduce that

n
" P(| anjX; |> n'/?) = P(max | an; X; [>n'/?)
1<j<n

i=1
n
+2P(| aniX; |> /2, x| aniX; |> nl/?). (12)
J=
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Also, we have

n

S P(anX; >0, max | anXi|>n'?)
; >J-
j=1

Z E[I{] an; X; |> n1/2)I( Jnax |amX |> nl/2)]
i=1

EI(| anj X; [> nY?)EI( max |amX;|>n'/?)}
1<i<j—-1

+Z{EI anj X; |>n1/2)EI( Jnax |amX [> nl/2)}

i=1
n
Z (| anjX; [>n'/?) = P(| an; X; [> "1/2)]1(1515?}(—1 | aniX; |> nt/?)

<E
Z | an; X; |> n1/2)P( max | aniX; |> n'/?) = II + II1. (13)
Define
Y. = aanj, if Qnj >0,
™ —aanj, ’Lf Anj < 0.

Then {Ynj,1 < j < n,n > 1} and {I(Yn; > nl/2)} are AANA by Lemma 2.1. By the

Cauchy-Schwarz inequality and Lemma 2.2,

[ II| = [EY_[I(| an;X; > n'/?) = P(| an;X; |> n'/?)]
i=1
1/2
X I(1<r§1<ajx | ani X |> n' /%) |

< [E(Z I(| ans X; |> n1/2) ~ EI(| an; X; |> n1/2))2
j=1
x E(I(mex | aniX; |> n}/2))2)1/2

= [Var(zl I(| an;X; |> n'/%)) P(max | aniXi [> nt/3)1/?
i=

< 2{Vard_I(Yn; > nt/3)] + Var[Y | I(Ya; < —n'/?)]}
j=1 j=1
x P(max | an: X; |> nt/?))1/2
1<i<n

< [s{i P(Yy; > n'/?%) + Xn: P(Y,; < —n/%)}

j=1 j=1
x P(max | anX; [> ni/)(A+ (1 + A% /222
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D P(| aniX [> n'/?) + 4(A + (14 A%)V/2)?
j=1

X 1/2
X P(1I£?<Xn | aniXi |>n'/?) (14)

<

NI =

by Vb < 24k From (12)-(14) we have

N =

> P(lan;X |>n'/?)
=1

<

—~—

L+4(A+ 1+ A%} P(max | aniXi [>n'/?)
+; P(| ansX |> n'/?)P(max | anX; [>n'/?) (15)
and from (11) we get

>~ P(l ansX [> n'/?) << P(max | aniX; [> n1/?), (16)
j=1 sSisn

for sufficiently large n. Therefore, from (10) and (16) the desired result (9) follows.
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