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Abstract

We consider a generalized N-policy for an M/M/1 queueing system. The idle
server starts to work with ordinary service rate when a customer arrives. If the

number of customers in the system reaches N, the service rate gets faster and
continues until the system becomes empty. Otherwise, the server finishes the busy
period with ordinary service rate. We obtain the limiting distribution of the
number of customers in the system. After assigning various operating costs to the
system, we show that there exists a unique fast service rate minimizing the

long-run average cost per unit time.

Keywords: M/M/1 queue, N-policy, distribution of the number of customers, optimal

service rate
1. Introduction

In this paper, we consider a generalized N-policy for an M/M/1 queueing system. The
server is initially idle and starts to work with service rate #,=0 on a customer’s arrival.
Customers arrive according to a Poisson process of rate v>(. If the number of customers
in the system reaches N ever, the server starts to serve customers with faster service rate
9 (p9=yp) including the customer being served at the moment, and continues until the
system being empty. Otherwise, the server finishes the busy period with the ordinary
service rate ;. For the stability of the system, we assume that #, is greater than v
When g, =0, this policy is reduced to the original N-policy.

Bae, Kim, and Lee(2002) recently introduced a two service rate policy where the
service rate is changed depending on the workload rather than the number of customers.
They obtained the limiting distribution of the workload process.
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A Generalized N-Policy and Its Optimization

The N-policy has been studied by many researchers since it was introduced by Yadin
and Naor(1963). Heyman(1968)}, Sobel(1969), and Bell(1971) discussed the optimization of
the N-policy. Federgruen and Tijms(1980), Yamada and Nishimura(1994), and Nishimura
and Jiang(1995) extended the N-policy to the two service rate policies and studied the state
probability of the queueing system.

In section 2, we obtain the limiting distribution of the number of customers in the
system by using the decomposition technique(Lee and Ahn(1998)), by which we decompose
the non-Markovian process of the number of customers into the several Markovian
processes for the purpose of analysis.

After assigning operating costs to the system, related to the service rate, heavy traffic,
and idle period, in section 3, we calculate the long-run average cost per unit time, and
show that there exists a unique fast service rate x, which minimizes the long-run average

cost per unit time.
2. Limiting Distribution of the Number of Customers

Let {M¥, t=0} be the process of the number of customers in the M/M/1 queueing
system under the generalized N-policy. Note that the time epoch when the server starts to
work after an idle period is an embedded regeneration point of {MN(#,t=0}. Since
{M#, =0} is non-Markovian, we first decompose {M#), =0} into three processes
{N(D, 120}, {Ny(H,t=0}, and {N;3(D,+=0). Process {N,(P,t=0} is formed by
separating the periods of service rate g, from the original process and connecting them
together. Process {N,(#, t=0} is similarly formed by separating and connecting the periods
of service rate pg Process {N3(D, =0} is formed by connecting the rest of the original
process, that is, N3(H)=0 for all =0.

Notice that processes {N (9, =0} and {Ny(9), >0} are now Markovian regenerative
processes. In both processes, we will call each separated segment a cycle. Each idle period
of the original process becomes a cycle in {N3(9, =0}. Observe that {N (9, =0}

finishes a cycle either at state 1 or N—1, and the probability of finishing at N—1 can be
obtained from the gambler’s ruin problem (Ross(1996), pp.186-188) as follows:

1= (u,/v) .
ﬁj—ﬁ if uy+v,
b= 1 My ¢}
W if/l1=l/.

Let P/n) be the limiting distribution of {N,(9, =0} and T; be the length of a
cycle in {N{8, =0}, for 1=1,2,3. Let P(n) be the limiting distribution of {AN(#, =0}

and T be the length of a cycle, the period between two successive regeneration points, in
{N(9), t=0}. Suppose we earn a reward at a rate of one per unit time when process
{N(9), £=0} is equal to 7 Then, by applying the renewal reward theorem(Ross(1996),

p.133), we can see that, for =0,1,2,...,
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where E{T]=ELT,]+pE[T3]+1/v and 14 is the indicator of event A. We, now,
evaluate P,(n), E[T,), Ps(n), and E[ T,] in the following two subsections.

2.1. Limiting Distribution of N,(?)

The corresponding balance equations are
(V+[l1)P1(l) :VPI(N—1)+/11P1(1)+/I1P1(2),
(wv+uDPi(n) =vP(n—D+u Pi(n+l), for2<n<N-2,
(v+u P (N-1) =vP(N-2),
—1
which, with lel(n): 1, have a unique solution given by

T—(u /) 1= (/)7

Pn)= NL—(u/v)—=1+(u /)Y if u,#v, .
2(N—n) _—
MN-1) mpu,=v,

for 1<a<N-1.

To obtain E{ T,], we observe that, after a busy period begins in the original process
{N(D, t=0}, process M(H=N(H—(v—p )t is a martingale with ELM(0)]=E[M(H]=1
until M) reaches either state ( or N. We also observe that T, is equal in distribution to
T1= min{f=0[MH=0 or N}. Applying the optional sampling theorem(Karlin and
Taylor(1975), p.259) to M(® with Markov time T'] gives

EIMOO)]=EIM(T)}=N- Pr{MT}) =N},
where Pr{N(T])=N} is equal to p given in equation (1). Hence, ElT,]=E[T]] is

obtained as follows:

Ny 1/y '
N — if £ v,

ElT))= }v—_(f”/”) I=(u, ) "H "
T2 ifu,=v.

2.2. Limiting Distribution of Ny(9

The corresponding balance equations are

(v+u2)P (1) = pu,Py(2),
(v+u)PAn) =vPy(n—1)+pu,Py(n+1), for n=22,n*+=N
(vt p)PoN) = poP (1) + vPy(N—1) + p,Po( N+ 1),
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which, with ZIPZ( n)=1, have a unique solution given by
=

_IN(l—(U/,Ug) ) forl<n<N-1,

Py(n)= B

L) A=) ™ forn=N,

From the theory of a standard M/M/1 queueing system, we observe that
T,=N - ( busy period of standard M/M/1 queueing system)

in distribution, since in a cycle of {Nj(#), =0}, the process starts with N customers.

Hence,
E{ T;] =N - E[busy period of standard M/M/1 queueing system]
—_ Nups 6)
1=y
Thus, from equations (4) and (6), we finally have
Ny Mo M1y I )
| T= /" wmy R —w
E[T]= N+1 1 (7N
=+ ifu,=v.

2v Ya—V
3. Optimization

In this section, after assigning four operating costs to the system, we show that there
exists a unique fast service rate minimizing the long~run average cost per unit time. Let
h(y) be the running cost per unit time with %(0) =0 while the server is working with

service rate g, and Ax) be the setting cost to increase the service rate to g,==x We
assume that x=g,>v. We also assign the cost to the heavy traffic. Let g(x) be the cost

per unit time while M#H=N+n, for n=1,2,3,.... Finally, let ¢=0 be the cost per unit
time while the server is idle. This can be considered as a maintenance cost or the penalty
for under-utilization of the server.

We assume that #(y), Ax), and g(x) are all nonnegative increasing functions. We

also assume that % and f are secondly differentiable convex functions which of course

include the linearly increasing functions. We also assume that Zlg( n)r*{oo for all 7
“=

0<7»<y/p,<1. For instance, if g(x) is a nonnegative increasing polynomial of #, for

n=1, then g(n) satisfies the assumptions.

We first calculate the long-run average cost per unit time when g,=2x By the
renewal reward theorem(Ross(1996), p.133), the long-run average cost per unit time is given
by

Ef cost Etdtg]ing il . (8)

From the results in section 2, we have
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and p is given in equation (1). The expected costs during a cycle but the cost related to

a=B T\ +ETsl=—

the heavy traffic are easily obtained as follows:
El running cost during 7] =h(g )E[ T,]1+ K x)pE[ T ;]
=nu 1)(4——1; t)+h(x)—xp_%,
Ef setting cost during T]= pAx),
and

EX cost for idle period during T]= cE[ T3]=-§.

The expected cost related to the heavy traffic can be calculated from equation (8) by noting
that

Ef{ cost for heavy traffic during T}
= FJ cost for heavy traffic per unit time] - E{ T]

= 3 s(WP(V+n) - E[T)

— 25 (1= ()} am(2)".

Hence, we obtain C(x), the long-run average cost per unit time when u;=zx, as follows:

(= )0+ e )2= UL 1€ )+ ) + B ©
Cx)=p a(x—v)+pN ’

for x=p > v, where
Ny = n
—J1_{X v
B =(1-(2)") S ()" wzupw

We now show the uniqueness of the fast service rate minimizing C(x). We need the
following lemma:
Lemma
(a) lim B(x)=0.

x—00
(b) lim B'(x)=0.

x—o0
(c) }gg (x—v)B ' (x)=0.
(d) B''(x)=0.

We are ready to show the uniqueness of x minimizing C(x). From equation (9), we
have

G ()= Gy(x)
Plax—w+om %

C(x)=

where
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Gi(0) = (x=0f () {alx=v) + N+ pNR2) +-LY
+ Ni'(x) {a(x—v) + pN} — aNI(x) + Nh(pe | )(a— 1/ v)
and Gy(x)=aB(x)— B’ (x){a(x—v)+ pN}. Notice that G ,(x) is increasing and Gy(x) is
decreasing. Hence, G (x)—G,(x) is increasing. It follows from Lemma that

l_igm Go(x)=0, and it can be shown that lim G;(x)=0. Therefore we have the following
o0 x—00

conclusions!

(i) When G (#)=Gy(#;), C(x) is an increasing function for x>y, and hence minimized
at x=pu;.

(i) When G ,(u)<G(z,), C(x) is minimized at x=x">x, and x" is the unique
solution of G(x)= G, (x).
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