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Numerical Algorithm for Cracked Structures Subjected to Cyclic Loading
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ABSTRACT

In this paper numerical algorithm for the continuum large crack model is proposed based on the
return-mapping formulation. The numerical test results show that the present algorithm works
appropriately under cyclic loading. It is also shown that in continuum damage models a large crack
model to prevent excessive tensile plastic strain should be used to have realistic cyclic loading
simulation results.

1. INTRODUCTION

The modeling of crack initiation and propagation is one of the most important aspects in the failure
analysis of concrete structures. Continuum damage models have been used to simulate softening
behavior of cracked concrete bodies.>” Under severe cyclic and dynamic loading micro and mid-size
cracks are developed to large cracks. In the classical continuum damage model a large crack is
represented by excessive plastic strain which shows unrealistic results under cyclic loading as
described in Fig. 1.

In this paper a model for large cracks in concrete and other strain-softening materials subjected to
cyclic loading is presented. The suggested large crack model is based on the plastic-damage model.”
Then numerical algorithm for the present large crack model is proposed based on the return-mapping
formulation. A numerical example is presented to show the performance of the proposed algorithm.

Fig. 1. Excessive Plastic Strain in Classical Damage Model
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2. PLASTIC-DAMAGE MODEL

To model the different damage states for cyclic multi-axial loading, both the tensile damage variable
x, and the compressive damage variable &, are used as independent damage indexes." Each damage

variable is defined based on the ratio of dissipated plastic energy to the energy capacity per unit volume of
materials (the specific fracture energy for tensile damage). To maintain objective results at the structural
level, the characteristic length(/, for tension, /, for compression), which is the crack bandwidth along

which the energy is dissipated, is specified as a material property. The factorization of the strength
function into two functional forms, one for the effective stress and the other for the degradation damage
variable, leads to the damage evolution equation described with the effective stress and damage variable

vector x = [k, k. ]T:
k = 1H(5,%) Y]

The plastic strain rate is evaluated by the flow rule. In contrast with metals, a non-associative flow rule
is necessary to obtain the proper dilatancy exhibited by frictional materials. If we use a Drucker-Prager
type function as the plastic potential function for the present plastic-damage model, the plastic strain rate
is derived from:

. )
&P = A(H +a,) @)

where 1 is a non-negative function referred to as the plastic consistency parameter, Is]|=+s:s
denotes the norm of the deviatoric effective stress s, and the parameter «, is chosen to give the

proper dilatancy for concrete.
For modeling the cyclic behavior of concrete, which has very different tensile and compressive yield
strengths, it is necessary to use two cohesion variables in the yield function: ¢,, a tensile cohesion

variable, and c,, a compressive cohesion variable. The yield function in Lubliner ef al.®), which only

models isotropic hardening behavior in the classical plasticity sense, is modified to include two cohesion
variables as follows:

F (@) = 7l + 375 + B0 e )~ ()] )

where &, denotes the algebraically maximum principal stress, and «is a parameter which is
evaluated by the initial shape of the yield function. The evolution of the yield function is determined
by defining [, and the cohesion parameter, ¢, such that:

_C(®)
F=mt-a-+ra) @

c=c.(x)
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The mechanism of microcrack opening and closing behavior can be modeled as elastic stiffness
recovery during elastic unloading from a tensile state to a compressive state. Using a multiplicative
parameter O <5 <1 on the tensile degradation variable D,, we have the degradation damage variable

D =1-(1-D,(x))(1-sD,(x)), where D, isthe compressive degradation variable. The total stress o
is determined in the form of:

6=(-D)s

=(1-D.(x))(1 - sD,(k))E, : (€ — &) ©

where 6 =E;:(e—¢P) is the effective stress and E, is the initial elastic stiffness tensor. The
parameter s is chosen to represent the stiffness recovery as follows:

3
> (6

s(B) = "=3‘< > (6)
> 1G]

i=1

3. FORMULATION FOR LARGE CRACK OPENING/CLOSING

After a large amount of microcracking, the crack opening and closing mechanism becomes similar to
discrete cracking, which cannot be appropriately represented only by the formulation described in the
previous section.

In this study it is assumed that the microcracks are joined to construct a discrete large crack if

K, = K., , where x, Is an empirical value near unity. To model the large cracking, the evolution of
the plastic strain caused by the tensile damage is stopped and the plastic strain increment is defined:

&P =(1-s)e? 7

To make the effective stress based on Eq. 7 is admissible in the stress space it is necessary to introduce
a new degradation variable D and modify the definition of the effective stress in Eq. 5:

& =(1~D7)Ey : (e —€P) 8)

The new degradation variable should be determined by the following Kuhn-Tucker type
loading/unloading conditions such that:

DY 20, D"F(6,k)=0, F(6,k)<0 9

Since during loading F(6,k) =0 which is a first-degree homogeneous function with respectto &, it
is obtained:
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D =1- CC(K)

7@x) (19)

4. NUMERICAL ALGORITHM

To implement the large crack formulation described in the previous section numerically, a three-step
return-mapping algorithm™® based on the backward-Euler method is used in the present study. First, the
following trial stress predictor is computed:

&y = (1= Dy )Eq : (8,01 — &5) (1D
The trial stress evaluated by Eq. 11 is admissible as the effective stress at the current time step n+1 if:

F(87.1,%,) = f(87.1,K,) —c(k,) <0 (12)

Otherwise, the current step is inelastic and two correctors, the plastic corrector and the crack damage
corrector, are required to make the effective stress admissible. In the plastic corrector the plastic strain
increment in Eq. 2 is discretized using the backward-Euler method:

AT =y, ?—(:;1”—‘ (13)
06

n+l

and the plastic strain at the current time step becomes:
eh, = &b +(1-s,,)AEP (14)

where s,,, is computed by Eq. 6 if &, 2 x,,, and equal to be zero otherwise. At the next step in the

present algorithm the crack damage corrector, which makes the evaluated effective stress return back
onto the yield surface, is obtained from Eq. 10:

Ce (Kn+l) (1 5)

o _1_
S (@n1sKni1)

n+l1 =1

Accordingly, the modified effective stress becomes:
G=(1-D)E,:(g,,, —€0.) (16)

which is used as the effective siress in Eq. 5 instead of the classical effective stress ¢ in modeling
large cracks.
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5. NUMERICAL EXAMPLE

A numerical algorithm for the present large crack model has been implemented in the context of the
finite element method. A single four-node plane stress quadrilateral isoparametric element is used to
show the performance of the present algorithm. The loads are applied by displacement control, and the
tested concrete material properties are: Poisson's ratio = (.18, the tensile strength = 3.3MPa, the
compressive strength = -22MPa, the fracture energy = 0.06N/m.

1 Load-Drapiacement Curve
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Fig. 2. Half-Cyclic Test Fig. 3. Full-Cyclic Test

Two tests are performed. In the first test the concrete specimen is subjected to a half-cycle
loading/unloading with three different «_,,values: 0.6, 0.9, 1. It is noted that if x_, =1 the present

crti

large crack opening/closing algorithm is not activated. In Fig. 2 the results with three «_. values are

crti

compared. It is shown that the result with «,,, =1 gives excessive palstic strain.

rti
In the second test the concrete specimen is subjected to full-cyclic loading with two different
K, values: 0.6, 1 to evaluate the effect of the present algorithm on the overall cyclic behavior. Fig. 3

shows that the excessive plastic strain in the response curve with «, . =1 produces unrealistic

behavior when the loading direction is reverscd from the tensile one to the compressive one, while the
overall response curve is appropriate in the test result with . =0.6.

crti

6. CONCLUSIONS

In this paper numerical algorithm for large cracking in concrete and other strain-softening materials
is presented. The algorithm is derived from the continuum large crack formulation in which the
effective stress definition is modified to prevent the excessive tensile plastic strain in the case of large
cracking. The numerical test results show that the present algorithm works appropriately under cyclic
loading. It is also concluded that in continuum damage models a large crack formulation to prevent
excessive tensile plastic strain should be used to have realistic cyclic loading simulation results.
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