C5

Extracellular Zinc Modulates Cloned T-type Calcium Channels

Jung-Ha Lee¹, Byong-Gon Park², Jin-Yong Park¹, Joong-Woo Lee², and Seong-Woo Jeong²

¹Department of Life Science, Sogang University; ²Department of Physiology and Institute of Basic Medical Science, Yonsei University Wonju College of Medicine

In the present study, we investigated effects of extracellular zinc (Zn²⁺) on T-type Ca^{2+} channel isoforms ($\alpha 1G$, $\alpha 1H$, and $\alpha 1I$) stably expressed in HEK 293 cells. Ca²⁺ currents were measured using 10 mM Ca²⁺ as a charge carrier under whole cell-ruptured patch configuration. Zn²⁺ blocked the α1H currents with a 100- and 200-fold higher potency (IC₅₀ = 2.5 μ M) when compared with those for blockade of the $\alpha 1G$ and $\alpha 1I$ currents, respectively. The blockade level by Zn^{2+} was much affected by varying test pulses (-60 mV to +40 mV), but not holding potentials (-110 mV to -70 mV). Zn²⁺ substantially slowed the inactivation kinetics of all the T-type currents. More interestingly, Zn²⁺ selectively prolonged deactivation of the $\alpha 1I$ currents, while having little effect on that of the $\alpha 1G$ and α1H currents. Taken together, our data suggest that (i) Zn²⁺ at low concentrations can be used for discriminating the alH from the other two isoforms, (ii) extracellular Zn²⁺ blocks cloned T-type Ca²⁺ currents in voltage-dependent and state-independent ways. In addition, we speculate that the Zn²⁺-evoked Ca²⁺ inflow through the all calcium channels during repolarizing phase of action potentials may play significant roles in regulation of neuronal functions in normal and pathophysiological conditions. (Supported by the KOSEF grant R01-2000-00169)