$GF(2^{m})$에서 정규기저를 이용한 고속 곱셈 역원 연산 방법

A Fast Method for Computing Multiplicative Inverses in $GF(2^{m})$ Using Normal Basis

  • 장용희 (한국항공대학교, 통신정보공학과) ;
  • 권용진 (한국항공대학교, 통신정보공학과)
  • 발행 : 2002.11.01

초록

최근 정보보호의 중요성이 커짐에 따라 암호이론에 대한 관심이 증가되고 있다. 이 중 Galois 체 GF(2$^{m}$ )은 대부분의 암호시스템에서 사용되며, 특히 공개키 기반 암호시스템에서 주로 사용된다. 이들 암호시스템에서는 GF(2$^{m}$ )에서 정의된 연산, 즉 덧셈, 뺄셈, 곱셈 및 곱셈 역원 연산을 기반으로 구축되므로, 이들 연산을 고속으로 계산하는 것이 중요하다. 이들 연산 중에서 곱셈 역원이 가장 time-consuming하다. Fermat의 정리를 기반으로 하고, GF(2$^{m}$ )에서 정규기저를 사용해서 곱셈 역원을 고속으로 계산하기 위해서는 곱셈 횟수를 감소시키는 것이 가장 중요하며, 이와 관련된 방법들이 많이 제안되어 왔다. 이 중 Itoh와 Tsujii가 제안한 방법[2]은 곱셈 횟수를 O(log m)까지 감소시켰다. 본 논문에서는 Itoh와 Tsujii가 제안한 방법을 이용해서, m=2$^n$인 경우에 곱셈 역원을 고속으로 계산하는 방법을 제안한다. 본 논문의 방법은 필요한 곱셈 횟수가 Itoh와 Tsujii가 제안한 방법 보다 적으며, m-1의 분해가 기존의 방법보다 간단하다.

키워드