MgB2 초전도 선재 제조 및 자장하에서의 임계전류특성

<u>고재웅</u>, 유재무, 김영국, 오개희^a, 최승주^a, 정형식^b, H. Kumakura^c, K.Togano^c 한국기계연구원, ^a일진전기(주), ^b아주대학교, ^cNIMS

The Fabrication of MgB₂ superconducting tape and its transport critical current property under magnetic field

<u>J-W. Ko</u>, J.M. Yoo, Y.K. Kim, K-H. Oh^a, S.J. Choi^a, H.S. Chung^b, H. Kumakura^c and K.Togano^c KIMM, ^alljin Electric Co., Ltd., ^bAjou Univ., ^cNIMS

kjw1572@kmail.kimm.re.kr

Abstract – The stainless steel sheathed MgB₂ tapes with Cu addition were fabricated by PIT method without heat treatment. The J_c value of 5,600 A/cm² and 16,000 A/cm² at 4.2 K and 5 T were obtained for the MgB₂ tape and 10 vol % of Cu added MgB₂ tape respectively. The J_c -B curve shows enhancement in J_c under magnetic field, which suggests enhancement in flux pinning property with Cu addition.

1. Introduction

Since the discovery of supercoonductivity at 39 K in MgB₂ compound by Akimitsu et al.[1], many research groups in the world have been studied to find out new possibilities of practical application. Experiments in MgB2 bulk and tape indicate that MgB2 system shows no weak coupling of grains and that grain alignment is not necessary conditions for obtaining large current transfer across grains[2]-[3]. Recently. MgB₂ tapes with high transport currents using Ni, Cu and stainless steel sheath were obtained without any heat treatment[4]-[6]. These are very advantageous for practical application compared to high $T_{\rm c}$ superconductors. Considering supercoonductivity at 39 K, one of possible applications of MgB2 compound is a crycooler cooled magnet operated at 20 K. In view of practical applications, superconducting parameters such as upper critical field, H_{c2} , critical current density, J_c , and irreversibility field, H_{irr} , are very important factors. The upper critical field, H_{c2} of MgB₂ at 20 K was about 12 T, which was higher than that of Nb-Ti wire at 4.2 K[7]. However, J_c under magnetic field at 20 K of MgB2 is still low, which does not reach to the practical level. Furthermore, H_{irr} at 20 K is also not high

enough for magnet application. In this paper, we report I_c of Cu added MgB₂ tape under magnetic field at liquid helium temperature and propose the possibility of enhancement in transport properties under magnetic field.

2. Experimental

Commercially available MgB₂ powder with various amounts of Cu powder was packed into stainless steel tubes. These tubes were rolled into rectangular rods using groove rolling and then cold rolled into tapes. The final size of tapes was about 4 mm in width and about 0.6 mm in thickness. These tapes were cut into short pieces with a length 4-5 cm, and current leads and voltage taps were directly soldered to the sheath materials of the tapes. A magnetic field was applied parallel to the tape surface. The critical current I_c was measured by a standard four-probe resistive method at 4.2 K in magnetic fields with a 1 μ V/cm criterion.

3. Results and Discussion

Figure 1 shows the typical cross section of the stainless steel sheathed MgB_2 tape. Densified microstructure was obtained without any heat treatment. Figure 2 shows J_c versus magnetic field curves of Cu added MgB_2 tapes. The J_c values of Cu added MgB_2 tapes were much higher than that of the MgB_2 tape under magnetic field. The J_c value in 5 T of MgB_2 was about 5,600 A/cm² and 16,000 A/cm² for 10 vol % of Cu added MgB_2 tape. Enhancement in J_c under magnetic field for Cu added MgB_2 tape can be explained by the high packing density of MgB_2 with Cu addition associated with the hard sheath material.

Figure 3 shows the abnormal behavior in voltage versus current curve at 6 T. That shows a possibility in enhancement of flux pinning property with Cu addition. The introduction of pinning centers is required to obtain substantial increase of J_c . The introduction of pinning centers is also effective in reducing the sensitivity of J_c to the magnetic field.

4. Summary

We fabricated MgB₂ tape and Cu added MgB₂ tapes by PIT method without any heat treatment. The J_c value of 5,600 A/cm² and 16,000 A/cm² at 4.2 K and 5 T were obtained for the MgB₂ tape and 10 vol % of Cu added MgB₂ tape respectively. The J_c -B curve shows enhancement in J_c under magnetic field, which suggests enhancement in flux pinning property with Cu addition.

Acknowledgement

This research was supported by a grant from Center for Applied Superconductivty Technology of the 21st Century Frontier R&D Program funded by the Ministry of Science and Technology, Republic of Korea.

[Reference]

- [1] J. Nagamatsu, N. Nakagawa, Y. Zenitani, and J. Akimitsu, "Superconductivity at 39 K in magnesium diboride", Nature, 410, 63, (2001).
- [2] D.C. Labalestier *et al.*, "Strongly linked current flow in polycrystalline forms of the superconductor MgB_2 ", Nature, 410, 186–189, (2001).
- [3] H. Kumakura *et al.*, "Critical current densities and irreversibility fields of MgB_2 bulks", Physica C, 363, 179–183, (2001).
- [4] S. Jin *et al.*, "High critical currents in iron-clad superconducting MgB₂ wires", Nature, 411, 563-565, (2001).
- [5] G. Grasso *et al.*, "Large transport critical currents in unsintered MgB₂ superconducting tapes", Appl. Phys. Lett., 79(2), 230–232, (2001). [6] H. Kumakura et al., "High transport critical current density obtained for powder-intube-processed MgB₂ tapes and wires using stainless steel and Cu-Ni tubes", Appl. Phys. Lett., 79(15), 2435–2437, (2001).
- [7] Y. Takano, H. Takeya, H. Fuji, H. Kumakura, T. Hatano, K. Togano, H. Kito, and

H. Ihara, Appl. Phys. Lett., 78, 2914, (2001).



Fig.1. Optical micrograph of Cross section for MgB₂ tape

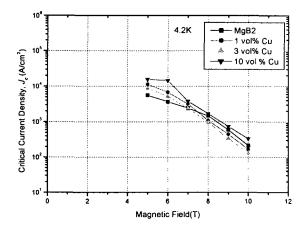


Fig.2. J_c -B characteristics at 4.2K of MgB₃ tapes with different amounts of Cu

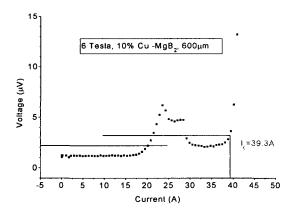


Fig.3. V-I characteristic at 4.2K and 6T of 10 vol% Cu added MgB₂ tape