초록
We describe a modified method for effectively pretreating soil highly contaminated with ANT or BaA (both initial Conc. are 500 mg/kg soil), i.e., we apply Fenton oxidation in which ethanol is added to increase ANT and BaA removal. At least 0.5 $m\ell$ or 0.75 $m\ell$ of ethanol were added to 1 g of artificially ANT or BaA-contaminated soils (i.e., alluvial and sandy soil), respectively. This was followed by Feton oxidation in which various amounts of $H_2O$$_2$ and Fe$^{2+}$ were added. The results showed more than 98 % of ANT or BaA removal efficiency However less than 10 % of ANT and BaA removal efficiency was obtained in addition of distilled water or sodium dodecy1 sulfate. Additionally, we employ GC-MS to identify the main oxidation product generated by the optimized Fenton reaction [i.e., ANT or BaA degraded in to 69-73% 9,10-anthracenedione (ANTDI) or 43-51% 7,12-benz(a)anthracenedione (BaADI), respectively]. The biodegradability of ANTDI or BaADI are subsequently confirmed to be much more rapid than that of ANT or BaA, respectively, results suggesting that Fenton oxidation with ethanol-microbial treatment can be effectively applied to remove ANT or BaA from soil.l.