A Spatial Structural Query Language—G/SQL

Yu Fang

Fang Chu

Tang Xinming

Peking University, 100871

Beijing, China

[Abstract]
Traditionally, = Geographical Information
Systems can only process spatial data in a
procedure-oriented way, and the data can’t be treated
integrally. This method limits the development of
spatial data applications. A new and promising method
to solve this problem is the spatial structural query
language, which extends SQL and provides integrated
accessing to spatial data. In this paper, the theory of
spatial structural query language is discussed, and a
new geographical data model based on the concepts
and data model in OGIS is introduced. According to
this model, we implemented a spatial structural query
language G/SQL. Through the studies of the
9-Intersection Model, G/SQL provides a set of
topological relational predicates and spatial functions
for GIS application development. We have
successfully developed a Web-based GIS
system—WebGIS—using G/SQL. Experiences show
that the spatial operators G/SQL offered are complete
and easy-to-use. The BNF representation of G/SQL

syntax is included in this paper.

[Key Words] Spatial Structural Query

Language, G/SQL, Geographical Data Model, Spatial

Database.

G/SQL research background
Geographic Information System (GIS), rapidly

developed, is now debouching out from special realm
and gaining wide prevalence. It is even now applied in
the information services toward public. The
development of GIS is not only benefited from the
progress of computer science and technology, but also
is pushed by the increment of spatial data globally.
People are now even conceiving of the prospective of
so-called “Digital Earth”. The aim of the Digital Earth
is to build up a complicated huge information system
with a spatial location as a backbone and provides
speed, correct, sufficient and complete information for
various applications. Under such a situation improving

spatial data handling and interfaces is imperative.

In traditional GIS the method to handle spatial
data is “process-oriented” and treats geometry and
attribute data separately. The key reason causing this
problem lies in lacking of data warehouse and system
that can uniformly manage geometry and attribute data.
This paper proposes a spatial structural query language
-- G/SQL, based on a spatial data model and spatial
databases, and implements this language in our

WebGIS software in Peking University.

Several papers have been published on research

— 860 —

on this field. Allen [1] formalized temporal topological
relations for temporal data. Egenhofer and Franzosa [4]
proposed their famous 9-intersection models for
spatial topological relations between spatial features.
Egenhofer [S] then prototyped a spatial data query
model. Chen and Zaniolo [3] realized a spatio-tempoal
query language for accessing spatio-temporal data on a
single map. There are other researches for the related

applications [3]{6]{7][10][12].

This paper offers a canonical definition for
spatial data management and spatial query statement.
The implementation of G/SQL has referred to
manipulation specifications made by OGC (Open GIS
Consortium) [8]. Since the OGC does not confine the
implementation methods and processes for its series of
open development standards, this paper introduces the
concepts of spatial structural query language and
provides a method that has been implemented by
G/SQL in the client/serer structure, referring to the
OGC standards. The initiative of the paper is to
stimulate the research and discussions as well as more

development of new products on spatial query.

A WebGIS --- an implemented system with
G/SQL functions

The development of our WebGIS system aims at
the GIS application in Web. The system adopts the
client/server structure. The spatial data are stored in
the spatial database on the server and managed
uniformly by the spatial data management system. The

system offers the front user by Java applets. A user can

browse, query, zoom and roam the spatial data by
downloading the system applets.
WebGIS structure
The client end of WebGIS contains Java Applets
while the server contains spatial data, and GIS server
components containing G/SQL compiler and the
geo-information manipulation machine as well as the

component for external data transfer.

The Java component at the client end is
responsible for the user interaction: it can display the
map that is downloaded from the server in plenty of
map display models. It supports the manipulation such
as browsing, zooming and roaming. It accepts the user
requests through a straight and convenient form
interacting with G/SQL, and transforms the forms into
a G/SQL statement and sends to the server for data
handling. It also receives the results which are sent

back by the WebGIS server.

The WebGIS server is software running on the
SUN platform. The server receives a G/SQL request,
compiles by the G/SQL compiler into geo-information
manipulation atomic statement sequence, and submits
to execute by geo-information manipulation machine.
The processed result will be clipped into GDTP data
package and be sent back to the user end, where GDTP
(Geodata Transfer Protocol) is a protocol followed by
spatial data transferring in WebGIS. The server adopts
the multi-thread structure in order to offer high
performance service and sufficiently utilize the system

resources.

— 861 —

The data source of the entire system is obtained
by the external data transfer component. The
component transfers the data in the old Geolnfo
platform, EO0 format, and Chinese Spatial Data
Transfer Standard (CSDTS) into the spatial database.
G/SQL can also implement the organization of these
data and generate relating system information in the

spatial database.

G/SQL at server end and client end

The client end runs Java Applets of WebGIS in
the standard navigator that supports JAVA, wﬁile the
server end runs the application programs on SUN
workstation. Both these ends, though they have
different technologies and different environments, can

make use of the functions of G/SQL sufficiently.

To Java Applets, G/SQL actually plays a role of
data request protocol between server and client ends.
G/SQL can express a user’s requests completely and
concisely and let Java Applet send the request to the
server at one time. In this process, the client end
enjoys the facility that can ‘be called
“non-process-oriented”. For example, in traditional
GIS, when a user searches for the hotels within 2
kilometers from the train station, he has to do several
operations: buffering 2 kilometers centered at the train
station, and overlaying the buffer zones with all hotels.
Now a user can not only select such a way to find the

hotels, but also write one G/SQL statement to express

his request entirely. The Java Applet programmer can

also simplify the complexion of software development

by use of G/SQL.

To the external data transfer component, G/SQL
provides the facility and security mechanisms for
transferring of external spatial data into the spatial
database. G/SQL has a series of definition statements
and updating statements for manipulation of various
spatial objects in databases, for guarantee of the
completeness, consistency and correctness of these
spatial objects, and for realization of the operation and
updating of normal objects and data in spatial

databases.

Spatial data model

The spatial data model in WebGIS refers to the

Open Geodata Interoperability Specification
(OpenGIS) [8]. Thé model takes the spatial features as
its center and organizes the spatial database in multiple
levels, which is guided by the Open GIS

Specifications [9].
Spatial feature model

In WebGIS, a spatial entity is described by a
composition of its geometry and attribute. Spatial
features are organized into map layers, and each layer
corresponds to a map layer table in the relational
databases, which stores the attribute data and a special
type GEOID. The geometry database adopts the
geometry layer, which was used in the old Geolnfo

platform. Every spatial feature in the map layer table is

— 862 —

linked with its geometry in the map layer through an point is the same, then the curve is called

identity. “closed”. A closed curve has no boundary, while the

boun of a non-closed curve is composed of its
The structure sketch of the geometry class is dary ommp 0

th end points.
illustrated in Figure 1. both end points
Geometry Reference
System
' |
Point Curve Surface
2+ 4 j&
—<>{ Line String Polygon
I I
4 Line Ring 1+

Figure 1: Levels of geometries

We adopt object-oriented method to analyze the

class level of each geometry. The top layer refers to
the “super geometry” in the spatial reference system.

The geometry can be divided by:

0-dimensional topological structure — point:
denotes the single location in the coordinate space. A

point has a x and a y coordinates, without boundary.

1-dimensional topological structure — curve
(Figure 2): is the sequence of points. The interpolation

method between points is defined by the sub-class of

the curve. If a curve does not cross at any point,

then it is called “simple”. It the start point and the end

Currently WebGIS defines one sub-class ---
Line string, of a simple curve only. That is, a linear
interpolation method is adopted between points. The
adjacent points of a line string define a line. If a line
string has only two points, then it becomes a line. If a
line string has the same point at its two ends, it

becomes a ring.

Ol drR

Lire string Lire
sstarting point, e=end point ane

Figure 2: Curve geometries

— 863 —

Self-intersecting

2-dimensional topological structure - surface
(Figure 3): is composed of one external boundary and
zero / more internal boundaries. The boundary of a
surface is the set of these boundaries. If a surface is
not-self-intersected and simple, then it becomes a
polygon. WebGIS supports Polygon. A polygon is
composed of finitely mutually non-intersected rings,
where one of these rings is the external boundary of
the polygon, and the interior of the polygon is the area

between external boundary and internal boundary.

External boundary

the system shields the difference between the screen
and internal storage, so that a user “touches” the data
as one uniform relational database.

The organization of spatial features adopts
multi-layer database model (Figure 4)

The following is the description of each spatial
object and notation supported by multi-layer spatial
database model in WebGIS:

1.Spatial feature: It is the abstract of entire

spatial entity in the real world, with geometric and

Internal boundary

Interior of the polygon

Figure 3: Polygon geometries

Spatial database model

The data model of the spatial database is

designed based on the spatial features defined by OGC.

A spatial feature is composed of attribute and
geometry parts. These two types of data are stored
separately in the spatial database: the geometric data is
stored in the file system that was adopted in the old
Geolnfo platform with quad-tree and B+ tree indices;
the attribute data is stored in the relational database.
The spatial database integrates the attribute and
geometry data through the notation of spatial features.

By use of spatial structural query language (G/SQL),

semantic attributes,which are represented by its

geometric and semantic forms respectively.

-

Ma

i%

LayérSet: layers with
same theme

/

5

Figure 4: Level structure of spatial features

— 864 —

2.Geometry: It is the geometric attributes of a
spatial feature, represenied by point, line string or
polygon etc. Actually it is the union of coordinate
geometry with the spatio-temporal reference system.

3.Layer: the minimum set of spatial features is
the layer. A layer defines the representation form of the
semantics of spatial features. The geometric attributes
of all spatial features constitute a set, which is called
GeoLayer. The layer itself has some attributes like its
name, coverage and subject. The spatial manipulation
and analysis of G/SQL are exerted on the layers. It is

the minimum unit of G/SQL manipulation.

4.GeoLayer: It is the layer consisting of
geometric attribute of spatial features in the layer. It
defines the map size, outline, projection and

topological relations between geometries of a layer.

5.Map: It is the set of related layers. Generally it
is the set of layers covering the same geographic area.
All layers of one map have the same maps size, outline

and projection.

6.Theme: it is the ordered set of the attribute
structure of layers, representing some meaningful
combination of attributes. Only the layers with the

same attribute structures can be called the same theme.

7. LayerSet: It is the set of the same themes.
Generally these layers cover a certain coverage, but
they need not to have the same spatial coverage. That
is, there is no limitation if these layers are adjacent or

separated.

8.Mapbase: It is the set of LayerSet. All
layersets should have the same coverage size, outline
and project and structure, i.e., the layers in a MapBase
should have one-one relations between each other and

can form a map logically.

From the above description we can perceive that
various constraints including completeness and
consistency can be defined between layers, layersets,
maps and mapbases. All these constraints are the
important part of the level model of the spatial
database. The spatial database stores and maintains
relations between different levels of spatial data, and
the constraints on completeness and consistency
between levels through the system table. G/SQL
provides a series of definition statements and updating
statements in order to realize the creation and updating
of objects in each level in the spatial database. The
various constraints between levels can be also
maintained during the statements execute. Furthermore,
G/SQL provides a series of statements for consistent

checking the consistency between levels explicitly.

G/SQL statements

The emphasis of G/SQL designing is the
SELECT statement. The design of this statement starts
from the research and classification of topological
relations and spatial functions. G/SQL preserves the
topological relations and spatial functions as key
words, which are called spatial functors. G/SQL offers

plenty of spatial functors with strong expressions and

— 865 —

can meet most requirements of GIS applications.

This section will describe the predicates of
topological relations and spatial functions, then gives
the grammar table (BNF) and discusses the SELECT

statement.

Predicates of topological relations

A topological predicate is a Boolean function to
determine whether a certain topological relation

between geometry holds or not.

The basic method to determine the topological

relation between two geometries is to classify the nine
kinds of relations between the interior, boundary and
exterior of spatial objects, and ascertain the
meaningful combinations for overlaying, and then
analyze the result of calculation. This method is called

the 9-intersection model.

The boundary of a spatial feature is the set of
geometries whose dimension is one dimension less
than the feature. The boundary of a point is empty, the
boundary of a non-closed curve is the set of two end

points, and the boundary of a polygon is the set of

curves that compose the polygon. The interior and the
exterior are only fitful to the spatial features that are
closed. The point set excluding the boundaries is the
interior of the feature. The point set, which is neither
in the interior nor at the boundary forms the exterior of

the feature.

The 9-intersection model lists exhaustively all
possible topological relations between two features
and can express these relations powerfully. Given a
spatial feature a and denote its boundary, interior and
exterior by B(a), I(a) and E(a) respectively. Then the
intersection results between B, I and E of two features
can be the set of geometries of different dimensions, as
well as the empty set. For example, the intersection
between two lines that are crossed but not overlaid
contains only the point of dimension 0. The
intersection result Between two lines that are partly
overlaid contains a line of dimension 1. Denote the
maximum dimension of the intersection between two
geometries by Dim(x), then the value ranges {-1, 0, 1,
2}, where —1 = dim(¢). Then the dimension matrix of

the 9-intersection model will be the following:

B (b) E (b)
B(a) Dim(B(a)nB(b)) dim(B(a)nI(b)) dim(B(a)nE(b))
I(a) Dim(I(a)n B(b)) dim(I(a)I(b)) dim(I(a)nE(b))
E(a) Dim(E(a)B(b)) dim(E(@)nI(b)) dim(E(@)E(b))

— 866 —~

The following example shows the dimension

matrix between polygon a and 5.
B(b) I(b) E(b)
B(a) 0 I 1
I(a) 1 2 2
E(a) I 2 2
The topological relation between two spatial I: dim(x)=1;

features can be determined by the following way.
Given two spatial features, and a modal matrix of the
9-intersection model representing the dimension that is
acceptable, if the result after the spatial operation is
corresponding to any one of acceptable dimension
values, then the predicate returns true, otherwise false.
A modal matrix has 9 values, corresponding to the 9
elements in the 9-intersection matrix, and the results
ranges {T, F, 0,1,2}. Suppose x is the result of an
operation, the returned value will have the following

meanings:

T: dim(x)e{0, 1, 2}, X#¢;

Fry

s dim(x)=-1, x=¢;

*: dim(x) is any value of set {-1, 0, 1, 2};

0: dim(x)=0;

2: dim(x)=2.

The 9-intersection model can detect many kinds
of topological relations, and it also allows a user to
assign the topological relations that he interests.
However, it is not like a natural language and is
difficult to use. Therefore, in more cases, a user would
like to adopt a simple and clear query such as,

searching provinces that are intersected with a river.

To meet the practical requirements, OGIS
defines five named spatial predicates: disjoint, touch,
contain, and overlay. These predicates meet the

following conditions:

They are mutually independent;

They are a complete covering set of ail

topological relations;

— 867 —

They are applicable for the geometries of the

same or different dimensions;

Every predicate can be formalized by the

9-intersection model;

Given a method to express the boundary of a
geometry and the start and end points of a line, any
mode of the 9-intersection model can be formalized as

a Boolean expression of these four predicates.

The meaning of these predicates is listed in the

following:

Disjoint: there is no common point between two

geometries.

Touch: If two geometries have a common point,
and the intersection between their interiors is empty,
then the relation fouch holds. It is applicable for
polygon/polygon, polygon/line, line/line,
polygon/point, line/point, but not applicable for

point/point.

Contain: If Geometry a is contained in the
interior of Geometry b, and is not intersected with the

exterior of the boundary, then b contains a.

Overlay: Part of Geometry a is superposition
(overlapped) with Geometry b and they are not
contained with each other. It is applicable to
line/line/

point/point, line/polygon and

polygon/polygon.

For the convenience, the following predicate can

be derived based on the above predicates:

Within: If Geometry a contains Geometry b,

then b is within a.

Intersect: If Geometry a and b are not disjoint,

then a intersects with b.

Based on the above predicates, we can get a list
of practical predicates for determination of the

topological relations between geometries:

Equal: determine if two geometries are the same

in space.

Disjoint: determine if two geometries are

spatially disjoint.

Intersect: determine if two geometries are

spatially intersected.

Touch: determine if two geometries are spatially

touched.

Within: determine if one geometry is within the

other spatially.

Contain: determine if one geometry contains the

other spatially.

Overlap: determine if two geometries are

spatially overlapped.

In the current version of WebGIS, G/SQL has
implemented the following predicates: equal, disjoint,

touch, within, contain and overlap.
Spatial functions

A spatial function operates on a single or more

—~ 868 —

geometries and calculates a value or a new geometry and binary spatial functions according to the number

after the operations. The definition of the spatial of objects in the functions. In our system the functions
functions also refers to the 9-intersecion models. are all limited within the 2-dimensional coordinate
system.

The spatial functions are classified into unary

1. Unary spatial functions

Point-based spatial functions:

Function name Function
GEOXcoor Get the x coordinate
GEOYcoor Get the y coordinate

Curve-bases spatial functions:

Function name Function

GEOLength Calculate the length of a curve
GEOSlope Calculate the gradient of a curve
GEOStartPnt Get the first point of a curve
GEOEndPnt Get the last point of a curve

Polygon-based spatial functions :

Function name Function

GEOArea Calculate the area of a polygon

GEOPerimeter Calculate the perimeter of a polygon

GEOMER Calculate the minimum bounding
rectangle of a polygon

GEOCentroid Calculate the centroid of a polygon.

GEOInnerPnt Calculate a point within a polygon.

GEOArcs Get all line strings of a polygons

— 869 —

Spatial functions on points, curves and polygons:

Function name Function

GEOBuffer Calculate the buffer zone

2. Binary spatial functions

Function Function Geometry
name variables (arguments)
and their order
GEODistan Return the minimum distance between two All variables
ce geometries
GEOOverla Return the overlapped part of two geometries Polygon-polygon
y
GEOMinus Return the difference of two geometries Polygon-polygon
GEOLeftCu Calculate the left part of the polygon when a Polygon-curve
t curve crosses through a polygon.
GEORightC Calculate the right part of the polygon when a Polygon-curve
ut curve crosses through a polygon.
GEOInterse Calculate the part of a curve when a curve Curve-polygon
ct crosses through a polygon.

4.3 BNF representation of G/SQL

The BNF representation of G/SQL is summarized in the following expressions:

check-coherence-on-layer-statement ::=
CHECK COHERENCE ON LAYER layer-name
check-coherence-on-layerset-statement ::=
CHECK COHERENCE ON LAYERSET layerset-name
check-coherence-on-map-statement ::=
CHECK COHERENCE ON MAP map-name
check-coherence-on-mapbase-statement ::=
CHECK COHERENCE ON MAPBASE mapbase-name
create-layer-statement ::=
CREATE LAYER layer-name

BINDING file-path

~ 870 —

create-layerset-statement ::=
CREATE LAYERSET layerset-name
TEMPLATE layerset-template-name
create-map-statement ::=
CREATE MAP map-name
TEMPLATE map-template-name
create-mapbase-statement ::=
CREATE MAPBASE mapbase-name
TEMPLATE mapbase-template-name
delete-layer-from-layerset-statement ::=
DELETE LAYER layer-name
FROM LAYERSET layerset-name
delete-layer-from-map-statement ::=
DELETE LAYER layer-name
FROM MAP map-name
delete-layerset-from-statement ::=
DELETE LAYERSET layerset-name
FROM mapbase-name
delete-map-from-statement ::=
DELETE MAP map-name
FROM mapbase-name
drop-layer-statement ::=
DROP LAYER layer-name
[HOLD GEOMETRY]
drop-layerset-statement ::=
DROP LAYERSET layerset-name
[HOLD LAYER]
drop-map-statement ::=
DROP MAP map-name
[HOLD LAYER]
drop-mapbase-statement ::=
DROP MAPBASE mapbase-name
[HOLD LAYERSET]
insert-layer-into-layerset-statement ::=
INSERT LAYER layer-name
INTO LAYERSET layerset-name
insert-layer-into-map-statement ::=
INSERT LAYER layer-name
INTO MAP map-name
insert-layerset-into-statement ::=
INSERT LAYERSET layerset-name
INTO mapbase-name
insert-map-into-statement ::=
INSERT MAP map-name
INTO mapbase-name

- 871 —

lookup-layer-statement ::=
LOOKUP LAYER layer-name
lookup-layerset-statement ::=
LOOKUP LAYERSET layerset-name
lookup-map-statement ::=
LOOKUP MAP map-name
lookup-mapbase-statement ::=
LOOKUP MAPBASE mapbase-name
lookup-sdb-statement ::=
LOOKUP SDB sdb-name
rename-layer-statement ::=
RENAME LAYER layer-name layer-name
rename-layerset-statement ::=
RENAME LAYERSET layerset-name layerset-name
rename-map-statement ::=
RENAME MAP map-name¢ map-name
rename-mapbase-statement ::=
RENAME MAPBASE mapbase-name mapbase-name
select-statement ::=
SELECT [ALL | DISTINCT] select-list
FROM table-reference-list
[WHERE search-condition]
[group-by-clause]
[HAVING search-condition]
[order-by-clause]
[DISPORIGIN x,y] [WINDOW w,h] [DISPSCALE scale_denominator]
statement ::= check-coherence-on-layer-statement

| check-coherence-on-layerset-statement

| check-coherence-on-map-statement

| check-coherence-on-mapbase-statement

| create-layer-statement

| create-layerset-statement

| create-map-statement

| create-mapbase-statement

| delete-layer-from-layerset-statement

| delete-layer-from-map-statement

| delete-layerset-from-statement

| delete-map-from-statement

| drop-layer-statement

| drop-layerset-statement

| drop-map-statement

| drop-mapbase-statement

| insert-layer-into-layerset-statement

| insert-layer-into-map-statement

| insert-layerset-into-statement

— 872 —

| Insert-map-into-statement

| lookup-layer-statement

| lookup-layerset-statement

| lookup-map-statement

| lookup-mapbase-statement
| lookup-sdb-statement

| rename-layer-statement

| rename-layerset-statement

| rename -map-statement

| rename -mapbase-statement

| select-statement

The BNF representation of elements in the statement SELECT (omitting the same part as ODBC 2.0 SQL [11])

is listed in the following:

between-predicate ::= expression [NOT]BETWEEN expression AND expression
boolean-factor ::= [NOT]boolean-primary
boolean-primary ::= predicate | (search-condition)
boolean-term ::= boolean-factor[AND boolean-term]
comparison-predicate ::= expression comparison-operator expression
comparison-operator ::= < |> | <= |>=|=| <
exists-predicate ::= EXISTS(sub-query)
expression ::= term | expression { + |- }
binary-function ::= binary-functor(expression, expression)
binary-functor ::= GEODistance | GEOLeft | GEOMinus | GEORight | GEOUnion | GEOOverlap |
GEOOverlay
factor ::= [+ | -]Jprimary
in-predicate ::= expression [NOT]IN { (value [,value]...) | (sub-query) }
like-predicate ::= expression [NOT] LIKE pattern-value
unary-function ::=unary-functor(expression)
unary-functor ::= GEOArcs | GEOArea | GEOBuffer | GEOCentroid | GEOLength | GEOMER | GEOPerimeter
| GEOSlope | GEOXcoor | GEOYcoor
null-predicate ::= column-name IS [NOT] NULL
predicate ::= between-predicate | comparison-predicate | exists-predicate
| in-predicate | like-predicate | null-predicate | quantified-predicate
| toporelation-predicate | toporelation-function
primary ::= column-name | literal | USER | set-function-reference
| (expression) | spatial-function-reference
quantified-predicate ::= expression { comparison-operator | toporelation-operator } {ALL | ANY }(sub-query)
search-condition ::= boolean-term[OR search-condition]
select-list ::= * | select-sublist [, select-sublist]
select-sublist ::= expression [[AS Jcolumn-alias] | {table-name | correlation-name }.*
spatial-function-reference ::= unary-function | binary-function
sub-query ::==

— 873 —

SELECT [ALL| DISTINCT] select-list

FROM table-reference-list

[WHERE search-condition]

[GROUPBY column-name,[column-name]...]

[HAVING search-condition]
table-reference ::= table-name[correlation-name]

table-reference-list ::= table-reference[, table-reference J..

term ::= factor | term { * |/ }
toporelation-function ::= toporelation-inbuffer

toporelation-inbuffer ::= GEOInBuffer(expression, expression, exact-numeric-literal)

toporelation-predicate ::= expression toporalation-operator expression
toporelation-operator ::= ADJACENT | CONTAIN | WITHIN | DISJOINT | EQUAL | OVERLAP

The G/SQL statement is classified into four
classes: data definition statement, data updating
statement, consistency check statement and data query
statement. The data definition statement can create,
delete and rename a layer, a layerset, a map and a
mapbase. The data updating statement includes the
insert and the deletion of a layer on a map or a layerset,
the insert and the deletion of a map and a layerset on a
mapbase, and the updating of information of a layer, a
map, a layerset and a mapbase. The consistency check
statement is the consistent check on a map, a layerset
and a mapbase. The data query statement will
comprehensively query the spatial features on a layer
or a layerset, and query all layers, layersets, maps and

mapbases in the spatial database.
SELECT statement
Abstract spatial data type (Geoid)

Geoid is the unique identity of a spatial feature.
It links the attribute in the relational table and the

geometry in the file system of the feature together. No

matter what type a geometry holds, it always has a
unique Geoid. Therefore the Geoid can be regarded as
an abstract data type. Every layer table has one and
only one Geoid column. The spatial functors will take

the operations on Geoids.

WebGIS has the following definitions and

mechanism based on the Geoids:

The storage, grammar and semantics of any
concrete type of geometry and the spatial index

mechanism;

A set of spatial functors whose variable is the
Geoid and the grammars and usage mechanism for

query when a spatial functor applies;

A function base for realization of spatial

operations.

Statement classification and query Results
In a SELECT statement, the FROM
sub-statement can appear at the layer level, denoting a

query on the layer. The expression with spatial

— 874 —

functors can be not only in the WHERE sub-statement
and HAVING conditional expression, also in the
object list in the SELECT sub-statement, denoting the
spatial operations on spatial features and the selections

on spatial relations in a layer.

A query statement can be classified into 4

classes, showing different query results respectively:

A SELECT sub-statement contains neither
Geoids nor spatial functions, while WHERE and
HAVING sub-statements do not contain any spatial
predicate so they are actually the common SQL
statement. The result of the SELECT generates a

common relational table.

A SELECT sub-statement contains Geoid, but
does not contain spatial functions. The WHERE and
HAVING sub-statements do not have any spatial

predicate. Then the result of the SELECT is a layer.

A SELECT sub-statement does not contain
GEOID and spatial functions generating spatial objects,
but it contains spatial measurement functions. The
WHERE and HAVING sub-statements contain some
spatial predicates. Then the SELECT statement returns

a common relational table.

A SELECT sub-statement contains GEOID or
spatial functions generating spatial objects, and
WHERE, HAVING sub-statements contain spatial

predicates also. Then the SELECT returns a layer.

According to the above list, we can find out that

if a SELECT statement contains neither GEOID nor
spatial functions that generate spatial objects, then it
returns a common relational table, otherwise it returns
a temporary layer. This layer has a certain life cycle in
the system: when expiring some time it will be erased
automatically by the system. The system ensures the
uniqueness of the layer name by naming rules for a
temporary layer. The server will send the results as
well as the temporary layer name back to the front end.
The front end can query, rename and delete the

temporary layer.

The following example is query of the fourth
class that searches the hotels within 50 kilometers

away from the Beijing railway station:
SELECT building.name, building. GEOID
FROM building X, building Y

WHERE Xtype = 4 AND Ytype = 3

AND Yname = “JLE7E%E”
AND X.GEOID OVERLAP Y.GEOID

In the above example we suppose the type of

hotels is 4 and the type of Beijing railway station is 3.

Display parameters

There are three optional sub-statements in the
query language: DISPORIGIN, WINDOW and
DISPSCALE. They are designed for assignment of
display parameters when the result is a layer
DISPORGIN shows the absolute geographic

coordinates of the window origin, WINDOW shows

— 875 —

the height and width of the window. DISPSCALE
shows the denominator of the display scale. The merit
of providing the display parameters is helpful to
reduce the data flow under the client/server structure
s0 as to accelerate the speed at the client end. This is

specially designed for WebGIS.

There are four procedures from the request
sending by a client to display of the result in the

navigator at the client end:

Query: query the spatial features that meet the

condition and generate the temporary layer.

Generate: determine the final display elements
according to the display parameters and the display
model parameters of every spatial featﬁre. For
example, the same spatial feature could hold different
display modes under different scales. The filling mode
at a large scale is not necessary possibly at a small
scale. At the same time, a layer has its own color and
font perhaps. Thus in the generation stage the system

has to obtain the concrete font and color.

Submit: according to the drawing information of
every feature like line style, filling, symbol and color
in the temporary layer, the system puts the display
forms mentioned above into the inner memory display
element table, or forms GIF or other raster images. In
most cases it is difficult to differentiate the submission

stage with the generation stage.

Display: display the results which are formed at

the submission stage through the interface provided by

the hardware and/or of the basic graph display.

When the server returns a query result, there are
three options: return the result of the submission stage;
return the result of the generation stage, and return the
temporary layer. The requirement to the client end
increases gradually on these three stages. If the server
returns GIF image to the client end, then the client can
browse the image in the navigator directly, without
any development for display at the client end. Many
WEB applications adopt this method to send the image
data. However, in Web GIS, when a user is browsing
the query result, he is not satisfied at the image on the
screen. They wish when the mouse move to some
building, there is an attribute window that can
highlight the building’s attribute row. Or when a client
clicks on an administrative region, this region could
change into a rémarkable filling mode. Another
requirement of the client could be, when he points on
the Beijing railway station from the attribute window,
the small dot on the map can be enlarged into a big red
dot, representing the station. Such these operations
frequently happen and are reasonable. If all these
simple operations needs server to process, then the
system speed is not endurable. Therefore, there should
be certain capabilities of processing GIS data at the
client end. Therefore it is the most suitable that the
server sends back the spatial data when the request is

processed.

On the other hand, when a user is roaming or

zooming a map, the screen can only show a part of

— 876 —

map. At this case, it will be wise if the JAVA Applet
provides the current display parameters, and asks the
server to return the part of data only, which are clipped

for the display area by the server on the results of the

query.

Compiling and executing G/SQL

There are four steps in order to compile and

execute a G/SQL:

Analyze the G/SQL statement. At this step, the
compiler will decompose the statement into words and
symbols independently to ensure that the statement has
an effective order, operators and conjunctions. The

compiler will detect the grammar and spelling errors.

Verify the statement. At this step the compiler
will check the system table to verify: if the table
used by the layer tables exists in the spatial database?
if there exist layer tables? If the parameters of spatial
operators meet the definition of spatial operation? If
there exist the geolayers of layers for spatial
manipulation and if they are effective? This step can

detect the semantic error furthermore.

Generate a atomic statement sequence. The
atomic statement is an object code that a
geo-information machine can recognize and execute.

The process includes the optimization of compiling.

Execute the statement: the geo-information
machine executes the statement through the atomic

statement sequence.

Optimization of compiler

There are two optimizations for the G/SQL to
generate a atomic statement sequence: the
optimization of executing order and re-use of the
middle results. We know that obtaining of data in the
relation database is much faster than that of geometric
data and spatial manipulations. Therefore, when
handling the relational condition and spatial condition
whose conjunction is “AND”, if we execute the
relational selection at first and then execute the spatial
selection, then the performance will be remarkably
improved. The relational query will select the features
that meet this condition, and the following condition
need only to select the geometric set that has been
filtered. By this way, though the spatial calculation is
tremendous, the objects that need to be processed are
just a relatively small set, which has been selected by

the previous process.

Another rule for the optimization of the
compiler is to remember the middle results by the
compiler and re-use these results in the Ilater
manipulations. For example, a user wants to query the
third class polluted factories within 500 meters where
the residential area is over 10,000 square meters and to
show the buffer zone of the polluted area. This query
will generate a temporary layer of the buffer zones
around the factories when it executes at first. If a
compiler can detect this buffer zone has been in the

query object list, then it can re-use the middle results.

— 877 —

Atomic statement directives

The atomic statement sequence is the object
codes that a compiler uses the set of source statement
directives. The source statement sequence is linear,
without control flow statements like branch,

circulation or loop.

The atomic statement has two classes including
geo-information manipulation source statement and
relational atomic statement language. The
geo-information atomic statement is corresponded to
the spatial functors in G/SQL, and does the analysis,
determination of spatial relations and spatial
measurement. The relational atomic statement is only

related to the relational database, that is, only a SQL

statement needs to be executed.

There are other atomic statements including the
secondary atomic statement and the return atomic
statement. The first statement is used for the assistant
process on manipulation of objects in the spatial
manipulation atomic statement and the relational
atomic statement. These include the verification and
matching of the manipulation of objects, the
generation, index, process and deletion of the middle
objects. The second statement will pack the result of a
query. It will clip the result if necessary, generate the

data package and finally send back to the client end.

Conclusions and application prospective

This paper proposed the concepts and methods

to query spatial data based on OGC. The designed

G/SQL can not only provide a series of operations on
spatial data, but also check the consistency on
different levels of the spatial data in the databases.
G/SQL has been implemented in the WebGIS software
and has shown its efficiency at both server end client
end. The software has applied in several applications

for GISs.

GIS applications are walking into thousands of
thousands of families as with rapid spreading of
Internet and with broad and real-time obtaining of
spatial data. The popularization of GIS applications is
becoming the engine of propelling the spatial data
management and query language. The spatial
structural query language will go forward along with
development. As a testing of spatial structural query
language, G/SQL still has several aspects to be
improved, such as, it does not provide the definition
mechanism of spatial type and spatial functors. The
normalization, interoperability and high efficiency is
its important development direction.

References

1.Allen JF. “Maintaining knowledge about

temporal intervals, Communications of the ACM

26(11): 832-843, 1983.

2.Cai M., Keshwani S. and Revesz P.Z.
“Parametric Rectangles: A Model for Querying and
Animation of Spatiotemporal Databases”, In
Proceedings of the 7th International Conference on

Extending Database Technology, pp.430-444, 2000.

— 878 —

3.Chen CX. and Zaniolo C. “SQL™: A and temporal information”, The Computer Journal, Vol

spatio-temporal data model and query Language”, 37, No. 1, pp. 26-34, 1994.
http://citeseer.nj.nec.com/512778.html, 2001.

4.Egenhofer, M. J. and Franzosa, R. “Point-set
Topological Spatial Relations”, International Journal
of Geographic Information Systems 5(2): 161-174,

1991.

5.Egenhofer M.J. “Spatial SQL: A Query and
Presentation Language” In IEEE Transactions on
Knowledge and Data Engineering Vol.6. No.l.

pp-86-95, 1994

6.Fang Y., Chen B. and Xue W.W. “The theory
and implementation of open GIS application

platform™, Journal of China image and graph, 1998.

7.Fang Y. “General introduction of digital earth”,

China computer world, 1999.

8.0GC> “The OpenGIS abstract specification” ,

http://www.opengis.org, 1996

9.0GC s “The OpenGIS simple feature

specification for SQL” http://www. opengis.org,

1998,

10.Oosterom, P. and Masessen, B. “Geographic
query tool”, JEC-GI ’97, Vol. 1 pp. 177-186, Vienna,

Austria, 1997.

11.“SQLspecifications”

http://www.oracle.com.,

12.Worboys, M.F. “A unified model for spatial

— 879 -

