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Abstract

In this paper, we propose spatial prediction model for landslide hazard mapping that can account for the fuzziness of

boundaries in thematic maps showing the different environmental impacts, depending on the scales and the resolutions

of them. The fuzziness or uncertainty of boundary is represented in favourability function based on fuzzy object

concept and the effects of them are quantitatively evaluated with the help of cross validation procedures. To illustrate

the proposed schemes, a case study from Boeun, Korea was carried out. As a result, the proposed schemes are helpful

to account for intrinsic uncertainties in categorical maps and can be effectively adopted in spatial prediction models for

other purposes.

1. Introduction

Spatial prediction models have been developed to
assess and map natural hazards, resource potential, or the
impact of human activities on the environment in the
geosciences (Chung and Fabbri, 1993, 1999; Chi and Park,
2001). Traditionally a specialist constructs a thematic map
identifying vulnerable areas that are likely to be affected
by future geologic events such as landslides. The
thematic maps have been built on expert’s knowledge
and previous events or discoveries using multi-layered
spatial geo-science databases. Although all predictions
related to future events are always subject to the
uncertainties, the maps produced by experts do not
express such uncertainties. Spatial prediction models
stem from the same needs to generate thematic maps
based on the same spatial data used by the experts. The
prediction models have been built on mathematical
foundations using multi-layered spatial geosciences
databases. The spatial prediction models are based on several

map layers using quantitative relationships between input map

information and the known occurrences. The models generally
assume that information in the database is sufficiently
representative of the typical conditions in which mass
movement originated in space and in time. For landslide hazard
mapping, spatial databases usually include spatial information
such as slope, aspect, and elevation in continuous scale, and
categorical map information such as geological map, soil map,
and land use map. Especially, categorical maps are
fundamental sources of spatial information in a GIS. However,
though these geographical entities are represented within a GIS,
many have in reality indeterminate boundaries and the
inaccuracy in boundary positions, depending on the map scale
and resolution (Burrough and McDonnell, 1998; Zhang and
Kirby, 1999). Since the 1990s, above concept has been put
forward to describe the uncertainties in the perspective of a GIS
(Wang and Hall, 1996; Cheng, 2002). However, it has been
rarely applied to spatial prediction models or integration tasks
for environmental impact rescarch or geological hazard
mapping, Also, though fuzzy set theory has been successfully
applied to spatial prediction model (Choi et al., 2000; Clumg
and Fabbri, 2001), the fuzziness of boundary in categorical
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maps has not been fully considered.

In this paper, to account for the fuzziness or uncertainties of
boundary in categorical maps, we propose and apply “fuzzy
object concept” for spatial prediction model. We tested the
effects of these types of the errors in spatial prediction models
for landslide hazard mapping. A case study from the Boeun
area in Korea was used to illustrate the methodologies. First,
we generated the fuzzy boundary in categorical maps and the
corresponding prediction maps based on the favourability
function. Then, using the cross validation method, we
generated the corresponding prediction rate curves to evaluate
the prediction results.

2. Methodologies

Categorical map information depicts the distributions of
discrete attributes in the form of exhaustive, exclusive area
units by crisp boundary lines (e.g. geological map, soil map,
forest map and so on). Categorical map information is usually
obtained by digitizing, vectorization, and rasterization.
However, many have in reality indeterminate boundaries and
the inaccuracy in boundary positions. Since they are distributed
continuously in space and time and measurement procedures
generally produce data with a limited accuracy, the errors are
compounded into the database including the original maps
themselves, and lead to the uncertain description of
geographical entities depending on the map scales and
resolutions of them.

Suppose we have two categorical maps: the scale of one
map is 1:25,000 and that of the other map is 1:50,000. If we
assume that each map was mapped with a line of standard
width (e.g. Smm) and the resolution of each map is 5m, a sharp
boundary on a 1:25,000 scale map covers 125m and 25 pixels,
and that on a 1:50,000 scale map corresponds to 250m and 50
pixels. The traditional approach ignores these uncertain or
fuzzy effects of boundary and useful information about the
nature of spatial change is lost.

In the traditional favourability function approach, spatial data
layers including original categorical maps and categorized

continuous maps are first overlaid in order to generate the
unique condition sub-areas (Chung and Fabbri, 1993). The
traditional approach assumes that the boundaries of all maps
have zero width and no uncertainty. However, if categorized
maps are originated from maps having different scale one
another, the unique condition sub-areas inevitably have
uncertain or fuzzy boundary width, not zero width, so these
uncertainties may affect the final prediction results.
Considering these conditions, we try to reflect the fuzziness
or uncertainty of boundaries into spatial prediction model. First,
in order to apply the proposed schemes, using the fuzzy
concepts, each class in certain categorical map is converted to
partial and multiple memberships of all the candidate classes
(Figure 1 (b)). In figure 2, blue color denotes the membership
values that are closer to zero membership. In this point, the
scale and resolution of the map and considered. Then, the
favourability function that reflects the gradual variation of an
attribute over the boundary between two dissimilar map units is
calculated using weighted or averaged estimate of the attribute
values over the boundary zone (Figure 1(c)). Different from the
traditional approach, in this approach, we can use the
continuous maps such as the slope and aspect directly for a
prediction map without categorizing the maps and the
corresponding prediction values can be computed in a pixel

unit, not a unique condition sub-area unit.

@ ®) ©
Fig. 1 (a) crisp boundary, (b) fuzzy representation model,
(c) fuzzy boundary.

The proposed method consists of two-step data
representation. The first step is one for constructing the fuzzy
membership fimctions in order to account for the fuzziness of
boundary position. By considering the scales and resolutions of
categorical maps, fuzzy membership function for each
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category is constructed. The fuzzy transition zones can be
computed from polygon boundaries by first spreading
isotropically and outwards from the original delineation and
then applying a semantic fuzzy membership function to
indicate the external gradation of membership function value
from well inside the polygon to the outside. The parameters of
the membership function are selected so that the locations
corresponding to the original drawn boundary are at the
crossover value, 0.5. The membership function is then applied
so that those sites well within the original boundary receive a
membership value of 1, those sites inside, but near the
boundary receive a membership value between 0.5 and 1, and
those sites outsides the boundary receive a membership value

below 0.5 concomitant with their distance from the

boundary(Fig. 2).
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Fig. 2 Fuzzy membership representation of boundary.

The second step is one for constructing the favourability
functions. For this, the empirical frequency distribution is
calculated. Then information about the gradual variation of an
attribute over the boundary between two dissimilar map units is
obtained by computing a weighted estimate of the favourability
values over the boundary zone, considering the boundary
membership functions of the two polygons.
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where, FF is a favourability function value and MF a fuzzy
membership function for boundary.
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Fig. 3 Favourability function in transition zones.

3. Case study

3.1 Data Set Description

To illustrate the proposed methods, we carried out a case
study using data sets from Boeun, Korea. For spatial databases,
the following 8 are used: (1) slope map, (2) aspect map, (3) soil
material map, (4) soil effective thickness map, (5) soil
topography map, (6) soil texture map, (7) soil drainage map
and (8) lithology map. The slope and aspect were calculated
from the 1: 5,000 scale DEM. The soil material, effective
thickness, topography, texture and drainage maps were
acquired from 1:25,000 scale soil maps. The lithology map was
obtained from 1:50,000 scale geological map.

3.2 Results

As for the favourability function model, we applied the
favourability function based on fuzzy logic(Chung and Fabbri,
2001) was applied. First, to account for the fuzziness of
boundaries, we generated the fuzzy boundaries in categorical
maps such as soil material, effective thickness, topography,
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texture and drainage maps and lithology map. Assuming that
each map was mapped with a line of 5mm width and
considering the scales of categorical maps, 125m and 250 m
were regarded as the transition zone of soil maps and lithology
map, respectively. As the fuzzy membership functions for
construction of the fuzzy boundary, a half bell-type
membership was applied. Then in the transition zones, the
favourability functions based on empirical frequency
distribution of categorical maps were calculated using a
weighted estimate over the boundary zone. To construct the
favourability functions of continuous maps such as the slope
and aspect, the smoothed kermel method, which is an improved
version of histogram(Silverman, 1996), was employed. Of
various reference kemels, a Gaussian bell-type kemel was used
and a spread parameter was set to 2% of the range of the data.
To integrate all data layers and visualize the prediction results,
fuzzy algebraic sum operator and rank order statistics were
applied.

To evaluate the prediction results, we applied the spatial
partitioning technique(Chi and Park, 2001). We divided the
entire study area into two separated sub-areas: a northern sub-
area and a southern sub-area. This was because greater
similarity exists between north-south than east-west sub-area.
We selected one of two sub-areas to construct a prediction
model and the other to validate the prediction. Through this
validation procedure, we can assess the effects of boundary
width and compare with them quantitatively. The space-
partition technique used in this study consisted of the following
steps. The 237 scarps distributed in the north sub-area were
used to compute the south sub-area likelihood ratio functions.
Similarly, the 138 scarps in the south sub-area were used to
compute the north sub-area likelihood ratio functions. Then we
assembled them into a mosaic of the two representations. In
order to validate a mosaic prediction map, we computed the
prediction rate curve, which can explain the proportion of
pixels correctly classified for the whole scarps in a mosaic map.
This prediction rate curve relates to the number of the future
landslides and to the probability of the occurrences of the future
landslides.

The cross-validation results using only 6 categorical maps
are shown in Fig. 4(a) and (b). The result using fuzzy boundary
shows more gradual variation of predicted values than that
using crisp boundary. Also, two prediction results show the
different prediction values in central zones of each categorical
class. These spatial patterns show the difference of prediction
power quantitatively(Fig. 5). In the prediction result obtained
using the fuzzy boundary, if we take the most hazardous 10%
area, then the prediction rate is about 38%. On the other hands,
in the prediction result obtained using the crisp boundary, the
prediction rate corresponding to the most hazardous 10% area
is about 28% and it is much worse than that based on fuzzy
boundary. Since the use of fuzzy boundary can include useful
information about the nature of spatial change, this effect
results in improvement of the prediction powers.
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Fig. 4 Prediction results using 6 categorical maps

(2) using fuzzy boundary, (b) using crisp boundary,
(c) prediction rate curves corresponding to (a) and (b).
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Fig. 5 shows the cross-validation results using 6 categorical
maps based on fuzzy boundary and 2 continuous map. When
we added the continuous maps to prediction models, the
prediction rate comresponding to the most hazardous 10% area
is about 42% and it is slightly improved than that obtained
using only 6 categorical maps based on fuzzy boundary. The
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spatial prediction pattern is different from that of prediction
using categorical maps. Especially, north-east areas show mmuch
higher values (red colors) than those obtained using categorical
maps (green colors), since the slope map, which is the most

important factor for landslides, affects the final prediction result.
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Fig. 5 (a) prediction result using all data sets,
(b) prediction rate curve.

4. Discussion and Conclusion

This paper has presented spatial prediction model reflecting
the fuzziness of boundaries in thematic maps showing the
different environmental impacts, depending on the scales and
the resolutions of them. In consideration of this fact, we
developed and proposed a new way of reflecting the fizziness
of boundary in categorical maps. The fuzziness or uncertainty
of boundary is represented in favourability function based on
fuzzy logic and the effects of them are quantitatively evaluated
with the help of cross validation procedures. As a result, the
proposed schemes showed the improved results than the
traditional approach. To strengthen the applicability of
proposed schemes, extensive experiments will be applied in
several study areas and following topics will be included: (1)
effects of variation of boundary widths, (2) effects of the
change of spreading parameter in smoothed kernel method.
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