구남집*(충남대), 최성규(충남대)

FE-4

Asymptotic property in variation for nonlinear differential systems via t_{\iinfty}-similarity

비선형 미분계의 점근성질 중 점근 평형점과 점근적 동치개념을 변동미분계 를 통하여 살펴보고 점근적 동치개념과 변동 점근적 동치 개념들의 동치성 을 주로 비교원리와 t_{∞} -상사개념을 이용하여 보인다.

김학만*(충남대), 전길웅(충남대), 김광휘(강남대)

FE-5

On the stability of a Difference Equation

In this talk, we investigate the Hyers-Ulam stability problem for the difference equation

 $f(x+p,y+q)+\varphi(x,y)f(x,y)+\psi(x,y)=0$. As a result we obtain: Suppose that functions $f, \psi: \mathbb{N}_k \times \mathbb{N}_k \to \mathbb{R}$ and φ satisfy the inequality

$$|f(x+p,y+q)+\varphi(x,y)f(x,y)+\psi(x,y)|\leq \delta$$

for all $x, y \in \mathbb{N}_k$. Then there exist unique functions

T, T_h , T_p : $\mathbb{N}_k \times \mathbb{N}_k \to \mathbb{R}$ such that T, T_p satisfy the equation

$$f(x+p, y+q) + \varphi(x, y)f(x, y) + \psi(x, y) = 0$$

 T_h satisfies the equation

$$f(x+p, y+q) + \varphi(x, y)f(x, y)$$

and the relations

 $|f(x, y) - T(x, y)| \le \delta \varepsilon(x, y),$

 $|f(x, y) - T_{h(x, y)}| \le \delta \varepsilon(x, y) + |\varepsilon(x, y)|,$

 $|T_{\rho}(x, y)| \le |\varepsilon(x, y)|,$ $T(x, y) = T_{h}(x, y) + T_{\rho}(x, y)$

hold for all $x, y \in \mathbb{N}_k$. If the range of f is in $(0, \infty)$, then the range of T_h is in $(0, \infty)$.