◎ 함 수 방 정 싀 ◎ (Funtional Equation)

조영수*(계명대), 강주호(대구대)

FE-1 Unitary Interpolation Problems in Tridiagonal Algebras

Given operators X and Y acting on a Hilbert space \mathcal{U} , an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation $AX_i = Y_i$, for $i = 1, 2, \cdots, n$. Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equation $Tx_i = y_i$, for $i = 1, 2, \cdots, n$.

Theorem A. Let $X = (x_{ij})$ and $Y = (y_{ij})$ be operators acting on such that $x_{io(i)} \neq 0$ for all *i*. Then the following statements are equivalent.

(1) There exists a unitary operator A in Alg \mathcal{L} such that AX = Y and every E in \mathcal{L} reduces A.

(2)
$$\sup \left\{ \begin{array}{c|c} \left\| \sum_{i=0}^{n} E_{i} Y f_{i} \right\| \\ \left\| \sum_{i=0}^{n} E_{i} Y f_{i} \right\| \end{array} \right\} : n \in \mathbb{N}, E_{i} \in \mathcal{L} \text{ and } f_{i} \in H$$

and
$$\frac{|y|_{i\sigma(i)}|}{|x|_{i\sigma(i)}|} = 1$$
 for all $i = 1, 2, \dots, n$.

Theorem B. Let $x = \{x_i\}$ and $y = \{y_i\}$ be two vectors in a separable complex Hilbert space $\mathcal U$ such that $x_i \neq 0$ for all $i = 1, 2, \dots, n$.

Then the following statements are equivalent.

(1)
$$\sup \left\{ \frac{\left\| \sum_{k=1}^{l} \alpha_{k} E_{k} y \right\|}{\left\| \sum_{k=1}^{l} \alpha_{k} E_{k} y \right\|} : l \in \mathbb{N}, \ \alpha_{k} \in \mathbb{C} \text{ and } E_{k} \in \mathcal{L} \right\} < \infty$$

and $|y_n|x_n|^{-1} = 1$ for all $i = 1, 2, \dots, n$.

(2) There exists an operator A in $Alg \mathcal{L}$ such that Ax = y, A is a unitary operator and every E in \mathcal{L} reduces A, where $Alg \mathcal{L}$ is a tridiagonal algebra.