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Abstract: An interconnection network is called
hamiltonian-connected if there exists a hamiltonian path
joining every pair of nodes. We consider the prob-
lem of adding edges to a mesh to make it hamiltonian-
connected. We show that at least two edges are neces-
sary for the problem. Also, we present the method to
add two edges to a mesh so that the resulting network
is hamiltonian-connected.

1. Introduction

In an interconnection network, one of the important fea-
ture is whether the network has a hamiltonian cycle or
path. A path(cycle) in a graph G is called hamilto-
nian if it contains every vertex of G exactly once. G
is called hamiltonian-connected if there exists a hamil-
tonian path joining every pair of vertices in G. If an
interconnection network is hamiltonian-connected, the
longest linear array from any node to any other node
can be implemented in the network. There have been
a lot of research results on whether an interconnection
network has a hamiltonian path or cycle[2], {3}, [6].

Meshes and tori represent the communication struc-
tures of many applications in scientific computations as
well as the topologies of many large-scale interconnec-
tion networks. There is a polynomial-time algorithm
for the hamiltonian path problem in a mesh, but mesh
is not hamiltonian-connected because it is bipartite{8],
[9]. Recently, Park and Kim[5] proved that P, xC, is
hamiltonian-connected. P, xC,, is a graph which has m
wraparound edges in every row of an m xXn mesh.

In this paper, we consider the minimum number of
edges which should be added to a mesh to make it
hamiltonian-connected. We describe a necessary condi-
tion that at least two edges should be added to a mesh
to make it hamiltonian-connected. The condition is de-
rived from the properties of mesh: it is bipartite and its
minimum degree is two. Then, we propose two graphs,
G1(m,n) and Ga(m,n). They are obtained by adding
one edge and two edges respectively between the same
colored corner vertices in an mxn mesh. Ga(m,n) is the
only one which is satisfying the condition. If n is odd,
then G'2(m,n) has two wraparound edges in the first row

and the last row of an mxn mesh. It is a spanning sub-
graph of many interconnection networks such as tori,
hypercubes, k-ary n-cubes and recursive circulants{6].
We show the hamiltonian properties of G1(m,n). And,
we prove that Ga(m,n) is hamiltonian-connected using
the hamiltonian properties of G1(m,n). Thus, we show
the minimum number of edges which should be added
to a mesh to make it hamiltonian-connected is two.

The rest of the paper is organized as follows: In
next section, some necessary definitions and notations
are introduced. In Section 3, we show the hamilto-
nian properties of Gy(m,n). We prove that G,(m,n)
is hamiltonian-connected in Section 4. Finally, Section
5 concludes this paper.

2. Definitions and notation

Let G = (V,E) be an m xn mesh, V = {v}|]1 <i <

m,1 < j < n} is the set of vertices(nodes), and E =

{Whvi )1 <i<m,1<j<n}u{@hotH1<i<

m,1<j<n} is the set of edges(links).

A mesh G is bipartite, that is, the vertices can be
colored with black and white in such a way that endver-
tices of every edge have different colors each other. v}
is called a black vertex if i+j is even; otherwise, it is a
white vertex. We let B and W are the sets of black and
white vertices in G, respectively. We call a vertex in a
mesh a corner vertez if it is of degree two.

We can consider that additional edges should be
added to a mesh to make it hamiltonian-connected using
the above property as follows:

- If mn is even, then |B| = |W/|. A hamiltonian path
joining every pair of white vertices has to contain
an edge between a pair of black vertices. Similarly,
a hamiltonian path joining every pair of black ver-
tices has to contain an edge between a pair of white
vertices. Thus, it is necessary to add at least two
additional edges between two pair of vertices which
have the same color each other.

- If mn is odd, then |B|=|W|+1. A hamiltonian path
joining every pair of black and white vertices has
to contain an edge between a pair of black vertices.
And, a hamiltonian path joining every pair of white
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vertices has to contain two edges between two pair
of black vertices. Thus, it is necessary to add at
least two additional edges between two pair of black
vertices.

Also, the minimum degree of a mesh G, 6(G), is two.
In graph G, the vertices with degree 2 are four corner
vertices. Thus, at least two edges are added between
corner vertices so that §(G) = 3.

Now, we are going to propose a graph which is satisfy-
ing the above condition by adding two(minimum) edges
to G. It is obtained by adding two edges between the
same colored corner vertices in G.

Definition 1. Let G=(V, E) is an m xn mesh.

(a) A graph Gi(m,n) is defined as (Vg,, Eg,), where
Ve, =V, and Eg, =E U {(v,v})}.

(b) A graph G2(m,n) is defined as (Vg,, Eg,), where
Vo, =V, and Eg, =E U {(v},v}), (vl ,v"‘)} if nis
odd; otherwise, Eg, =E U {(v},v?), (v,,v7)}.

Without loss of generality, when either m or n is odd
we assume 7t is odd. If n is even, then Ga(m,n) has two
additional edges between a pair of black corner vertices
and a pair of white corner vertices(see Figure. 1(b)). If
n is odd, then G2(m,n) has two additional edges in the
first row and the last row of an m xn grid graph as fol-
lows: (a) When m is odd, G2(m,n) has two additional
edges between two pair of black corner vertices(see Fig-
ure.1(c)). (b) When m is even, G3(m,n) has two addi-
tional edges between a pair of black corner vertices and
a pair of white corner vertices(see Figure.1(d)). Thus,
Gy (m,n) is only one which is satisfying the above con-
dition by adding two edges.

Also, it is a spanning subgraph of tori, hypercubes,
k-ary n-cubes. Gi(m,n) with odd n is a spanning
subgraph of Ga(m,n) (see Figure.1(a)), and we will
use its hamiltonian properties to prove hamiltonian-

vi v
v v
v i Vi by
(a) G1(3,5) (b) Ga2(4,4)
s v}
vi Vi
Vi 4 VR 4
(c) G2(3,5) (d) G2(4,5)

Figure 1. Examples of G1(m,n) and G2(m,n)

connectedness of G2(m,n).

We denote by R(:) and C(j) the vertices in row ¢ and
column j, respectively. That is, R i) = {v}]1<j<n}
and C(j)={vjj1<i<m}. Welet R(i : j)= Uick<;R(k)
if ¢ < 7; otherwise, R(i : j) = §. Sumlarly, C@G:j)=
Uick<; C(k) if < j; otherwise, C(i: j) = 0.

We empoly two lemmas on hamiltonian properties of
a mesh in [1], {4] to show the hamiltonian properties of
G1{m,n) and Ga(m,n).

Lemma 1. Let G be an mxn mesh, m,n>2.

(a) If mn is even, then G has a hamiltonian path from
any corner vertex v to any other vertex with color
different from v.

(b) If mn is odd, then G has a hamiltonian path from
any corner vertex v to any other vertex with the
same color as v.

Lemma 2. Let G be an m xn mesh, and two vertices
s,t have different color each other.

(a) For m,n > 4 even, G has a hamiltonian path from
stot.

(b) For m=2,n>3, and s,t ¢ C(k)(1<k<n), G hasa
hamiltonian path from s to ¢.

We denote by H{s,t|.X] a hamiltonian path from s to
t in the subgraph G (X) induced by X, if any. A path is
represented as a sequence of vertices. If X is an empty
set, H[s,t|X] is an empty sequence.

3. Hamiltonian properties of G,(m,n)

In this section, we will show the three hamiltonian prop-
erties of Gy(m,n). These are employed in proving the
hamiltonian connectedness of Ga(m,n).

Lemma 3. For m>2, n>3 odd, G;(m,n) has a hamil-
tonian path between any corner vertex s and any
other vertex .

proof. We assume that s = v*.

Case 1 m is even. By Lemma 1, there exists a
hamiltonian path from s to any other vertex ¢
which has a different color from s. If ¢ has the
same color as s, then we can construct a hamil-
tonian path P as follows: When ¢t € C(2 : n),
P = ("ol ,of, 0, HIL, HC(2 : n)]) by
Lemma 1. When t € C(l) P = (", o,
v um umel yme2 [vl,t|R(1 m~ l)ﬂ
C(1 : n—1)}). Note that v} and v} have a different
color from t.

Case 2 m is odd. By Lemma 1, there exists a hamil-
tonian path from s to any other vertex ¢ which
has the same color as s. If ¢t has a different
color from s, then we can construct a hamilto-
nian path P as follows: When ¢t € C(2 : n),
P = (Ul ,,Um 1:"' ,’U%,’U%,H['Ui,t‘C(Z : n)]) by
Lemma 1. When t € C(1), P = (], vP,---,
vgl—hvgl’vn - 71):1”—2, e ,U%,H[’U%,t‘R(l : m_l) n

C(1:n-1))). O
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Lemma 4. For m > 1, n > 3 odd, if vertices s,t are
on the same row, and adjacent to each other, then
G1(m,n) has a hamiltonian path from s to .

proof. We assume that s = v]* and ¢t = v]},.

Case 1 m = 1. G1(m,n) is isomorphic to a ring. Thus,
there exists a hamiltonian path from s to .

Case 2 m = 2. By Lemma 2, there exists a hamiltonian
path from s to t.

Case 3 m > 3. We can construct a hamiltonian pa-
th P = (5,07, 0%, -, v/ Ho]* o™ YR :
m~—1) o0, o™ ,,--+, vy2,t). The existence of
HPP™ ' v™ Y R(1: m—1)] is due to Lemma 3. 0O

Lemma 5. For m > 2, n > 3 odd, if s is on the last
row and has the same color as corner vertex, then
G1(m,n) has a hamiltonian path from s to any other
vertex ¢ which is in the different column from s.

prodf. We assume that s = v[" for 1<i<m and i is
odd. We can construct a hamiltonian path P from
s to t as follows:

Case It € W. P = (H[s,v}|C(1 : i)], H{vL,t|Ci+
1 : n)]). The existence of H(s, v} | C(1 : i)] and
Hlvl, t |C(i+1: n)] are due to Lemma 2.

Case 2t € B. P = (H[s, v}|C(1:%)],H[v},,, tiC(i+
1 : n)]). The existence of H[s, v} | C(1 : ©)] and
Hlv},,,t| C(i+1:n)] are due to Lemma 2. 0

4. Hamiltonian connectedness
of Gy(m,n)

In this section, we will prove that Ga(m,n) is
hamiltonian-connected. First, we prove the case that
n is odd using the hamiltonian properties of G1(m,n).
Then, we will prove the case that n is even.

Let P and Q be two vertex-disjoint path (a1, as,- -,
ay) and (b1,bs,---,b) on a graph G, respectively,
such that (a;,b1) and (aiy1,b)) are edges in G.
If we replace (a;,a;+1) with (a;,b1) and (aiy1,b),
then P and () are merged into a single path (aj,

ag,- - aai7b13b27"' abl,ai-l-l)"' 7a’k)‘ We call such a
replacement a merge of P and @ wr.t. (a;b;) and
(al+1)bl)-

Theorem 1. For m > 2, n > 3 odd, Gs(m,n) is
hamiltonian-connected.

proof. Let s = of and t = v§ for i < j, £ <y. When
m = 2, G2(2,n) is isomorphic to P> x C,,. Thus, we
will consider the case that m > 3.

Case 1 s and t are on the same row.

Case 1.1 Both s and ¢ have a different color from vf.

Case 1.1.1 When s,t € R(1), we can construct a hamil-
tonian path P' = (H{s,»}|R(1 : 2) n C(1 : )],
Hv: t|R(1:2)NCGE+1:n)]) in G(R(1:2)). P
passes through an edge (z,y) in R(2). Let z’ and ¢/
be the vertices in R(3) adjacent to z and y, respec-
tively. There exists a hamiltonian path P" between
z’' and y’ in G (R(3 : m)) by Lemma 5. By a merge
of P' and P" w.rt (z,z') and (y,y’), we have a
hamiltonian path between s and ¢.

Case 1.1.2 When s,t € R(2), we can construct a hamil-
tonian path P = (H[s,v}|R(1 : 2) N C(1 : 4)],
P H[V2,t{R(1 : 2)NC(E + 1 : n)]), where P' =
H{v},v3|R(3:m)}]. ¥ m=3, then P" = (v},03,. ..
v3_,,v3); otherwise, P’ exists by Lemma 3.

Case 1.1.3 When s,t € R(k), 2 < k < m — 2, we can

construct a hamiltonian path P = (s,vf ,--- vk,

)

H[v{“’l,vﬁ?f!R(l k - 1)]:”zk+1’”f+2’ ’”;‘c-l’
H[(of vk R(E + 1 m)] vk, vk ), vk, ).
When £k = m, P is same as Case 1.1.1. When

k=m—1, P is same as Case 1.1.2.

Case 1.2 Either s or t has the same color as vf. There
exists a hamiltonian path P’ between s and t in
G(R(1:k)) by Lemma 5. P' passes through an edge
(z,y) joining a pair of vertices in R(k) since at least
one vertex in R(k)is contained in P’ as an interme-
diate vertex. Let z' and 3’ be the vertices in R(k+1)
adjacent to  and y, respectively. By a merge of P’
and P” w.r.t (z,2') and (y,y'), we have a hamil-
tonian path between s and t, where P” is a hamil-
tonian path between z' and ' in G(R(k + 1 :m)).
The existence of P" is due to Lemma 5.

Case 2 s and t are on the different rows.

Case 2.1 m =3 and s € R(1), t € R(3).

Case 2.1.1 When both s and t are in W, we choose s’
and ¢’ such that s’ is in R(2), adjacent to ¢, and ¢/
is in R(3), adjacent to f. There exists a hamiltonian
path P = (H[s,s'|R(1,2)], H[t',t|R(3)]). Existence
of His,s'|R(1,2)] and H[t',t|R(3)] due to Lemma 5
and Lemma 4 respectively.

Case 2.1.2 When s € Bort € B and s, t are on
the same column, there exists a hamiltonian path
P = H[s,t|C(i : n)] by Lemma 1. G{C(1:i~—1))
has a hamiltonian cycle C, since i — 1 is even. P
passes through an edge (z,y) in C(¢). Let z’ and
y' be the vertices in C(i — 1) adjacent to = and vy,
respectively. By a merge of P and C — (z',y’) w.r.t
{(z,2') and (y,y'), we have a hamiltonian path.

Case 2.1.3 Otherwise, there exists a hamiltonian path
by Lemma 5.

Case 2.2 m > 3, s € R(1) and t € R(2).

Case 2.2.1 When s,t € W, there exists a hamiltonian
path P’ between s and t in G (R(1 : 2)) by Lemma
5. P’ passes through an edge (z,y) in R{2). Let =’
and y' be the vertices in R(3) adjacent to = and y,
respectively. By a merge of P’ and P” w.r.t (z,2')
and (y,y’), we have a hamiltonian path, where P is
hamiltonian path between 2’ and y' in G (R(3 : m)).
The existence of P” due to Lemma 4.

Case 2.2.2 When s € W and ¢t € B, there ex-
ists a hamiltonian path P as follows: (a) X
s and t are on the same column, then P =
(H[s,s'|R(1)], H[t',t|R(2 : m)]), where s’ and ¢
are adjacent to s and ¢ respectively, and s’ is ad-
jacent to t'. (b) Otherwise, if m is even, then
P = (H[s,v|C(1:9)], HvE,tICGE+1:n)]). Ifm
is odd, then P = (H{s,v1|C(1 : 3), H{v},t|C(i + 1 :
n)]).
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Case 2.2.3 s € B. If s and t are on the same col-
umn, then a hamiltonian path is same as Case
2.2.1(a); Otherwise, there exists a hamiltonian path
by Lemma 5.

Case 2.3 Otherwise
We can construct a hamiltonian path P =
(H[s,vL|R(1 : ), HWYPRI+1: m)]) if ¢ = 1,
then ! = 2; otherwise, | = =, and if t = vZ*!, then
k # i,n; otherwise, k = n. ]

Theorem 2. For m > 2, n > 4 even, Ga(m,n) is
hamiltonian-connected.

proof. Let s=0f ,t=v} fori<j,z<y.

Case 1 Either s€ Bandte Worse W and t € B.
If m=2and s,t € C(k) for 1 < k < n, then we
can construct a hamiltonian path P joining s and
t as follows: P = (s,v}_;,--- ,v}, H[v2,v:|C(i+1:
n)),v3,--- ,v;‘-’_l,t); otherwise, there exists a hamil-
tonian path by Lemma 2.

Case 2 s€ Band t € B.

When s,t € C(k) for 1 < k < n, H[s,v}|R(1 :
)] and H[v*,¢|R(l + 1 : m)] form a hamiltonian
path, where | = 2 if £ = 1; otherwise, | = =z.
Note that v} and v]" have different colors from s
and ¢, respectively. Otherwise, we can construct
a hamiltonian path P as follows: If s € C(1),
then P = (s,vjt!, -+ 0P, H[vl,vZ ' |RQ : 2 —
D], HvE,tIC(2 : n)NR(z : m)]). fs € C(2: n—2),
then P = (H[s,v*|C(1 : 1)], H[v},t|C(i + 1 : n)]).
If s € C(n—1), then P = (H[s,v}|C(i : n)NR(1:
z)], Ho*, v, |C(1 : i = 1), Hv™, t|C(i : n)NR(z +
1:m)]).

Case 3 se WandteW.

When s,t € C(k)(1 < k < n), we can const-
ruct a hamiltonian path P' = (H[s,v}|R(1 : )],
Hpm t|lR(I+1 : m)]), where | = 2 if ¢ = 1
otherwise, | = . Similary, s,t € R(k) for 1 <
k <m, we can construct a hamiltonian path P" =
(H[s,v{|C(1 : 1)}, H[v™,t|C(1+1 : m)]), where [ = 2
if ¢ = 1; otherwise, [ = . Otherwise, there exists a
hamiltonian path as follows: If ¢ is odd, a hamilto-
nian path is same as P’. If ¢ is even, a hamiltonian
path is same as P”. O

Corollary 1. The m-dimensional hypercube @,, can
be made to be hamiltonian-connected by adding two
edges.

proof. Qu, has a 2131 x 2031 mesh as a spanning sub-
graph[7]. By applying Theorem 2 to the mesh, the
statement follows. O

5. Conclusion

In this paper, we showed the minimum number of
edges which should be added to a mesh to make it
hamiltonian-connected. We described a necessary con-
dition that at least two edges should be added to a mesh
to make it hamiltonian-connected, and proposed a graph

which satisfys the condition. We proved that the pro-
posed graph is hamiltonian-connected. Thus, we showed
that a mesh can be made to be hamiltonian connected
by adding two edges. Also, our result can be applied
to other interconnection networks, such as tori, hyper-
cubes, and k-ary n-cubes, which not are hamiltonian-
connected but have a mesh as a spanning subgraph.
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