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Abstract: This paper shows design of maximal-period
sequences with prescribed constant auto-correlation val-
ues based on one-dimensional (1-D) maps with finite
bits. We construct such 1-D maps based on piecewise
linear onto chaotic maps. Theoretical analyses and some
design examples are given.

1. Introduction

Chaos-based random number generation has received
significant attention, especially, for its applications to
communications such as CDMA systems. The sim-
plest system to exhibit chaos phenomenon is a one-
dimensional discrete-time nonlinear dynamical system.
A class of one-dimensional nonlinear maps can produce
chaotic sequences whose properties can be designed and
analyzed theoretically. Though a chaotic sequence itself
is real-valued, it can be easily converted to binary se-
quences, called chaotic binary sequences, by appropriate
threshold functions. Binary sequences are most useful in
digital communicatiion systems. In applications of such
chaotic binary sequences, theoretical evaluation and de-
sign of statistical properties of such sequences are very
important because there are many kinds of chaotic se-
quences with various properties which depend on their
deterministic systems.

Design of many chaotic sequences of i.i.d. (indepen-
dent and identically distributed) binary random vari-
ables from a single chaotic real-valued sequence gener-
ated by a class of one-dimensional maps has been estab-
lished [1]. Sequences of i.i.d. binary random variables
are very useful as random numbers. However, non-i.i.d.
sequences, which have some correlations dependent on
the chaotic maps and quantization functions, are also
useful in some applications. Actually, it has been shown
that some sequences with exponentially vanishing auto-
correlations have better performance in asynchronous
DS/CDMA systems than ii.d. sequences [2]. Thus,
it is very important to design chaotic sequences with
prescribed statistical properties. We have given sim-
ple design methods to obtain chaotic binary sequences
with prescribed auto-correlation properties, including
higher-order statistics, based on one-dimensional piece-
wise monotonic onto maps [3].

For practical applications, chaotic sequences are often
generated by digital computers in order to guarantee the
reproducibility at transmitter and receiver ends. Dig-

ital computers have sufficient precision for generating
chaotic sequences of reasonable length for practical ap-
plications. However, their cost and speed are inferior to
conventional sequences such as M-sequences which can
be generated by simple shift registers [4]. For this prob-
lem, we have been trying to generate maximal-period
sequences based on one-dimensional maps with finite
bits whose shapes are similar to piecewise linear chaotic
maps. Some of them are generated by nonlinear feed-
back shift registers and their extended versions {5].

In this paper, we construct one-to-one maps with fi-
nite bits based on piecewise linear onto maps. This im-
plies that such one-to-one maps are one of approxima-
tions with finite precision (bits) to chaotic maps. We use
maximal-period sequences generated by such maps. In
other words, we use a minimum precision (the number
of bits) for a certain sequence length. This is reasonable
in terms of efficiency. It should be noted that statisti-
cal properties such as auto-correlation values of chaotic
sequences of finite length have some fluctuations from
their theoretical values. However, using such maximal-
period sequences based on one-dimensional maps with
finite bits, we can design binary sequences with con-
stant auto-correlation values for some time delays. We
discuss such design of maximal-period binary sequences
in detail.

2. Chaotic Binary Sequences by
Piecewise Linear Onto Maps

We can generate chaotic sequences by the one-
dimensional difference equation

Lppr =7(Tn), 2, €1=00,1], n=0,1,2,---, (1)

where 7(-) is a nonlinear chaotic map. In this paper, we
use piecewise linear onto maps whose mapping function
7:(-) in each subinterval I; (1 = 1,2,--. , N, } is given by

Ti(z) = iz +b;, |ai|>1, 7 :1; — 1 (onto). (2)
It is known that such maps have a uniform invariant
measure.

Furthermore, we convert chaotic real-valued se-
quences to binary sequences by using the threshold func-
tion defined by
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Figure 1. Well-known piecewise linear maps.
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Figure 2. Examples of piecewise linear onto maps.

Statistical properties of such chaotic binary sequences
depend on the chaotic maps and the threshold function.

2.1 LI.D. Binary Sequences

Independent and identically distributed (i.i.d) binary
sequences can be generated several types of chaotic maps
and binary functions [1]. In this paper, we consider sim-
ple and well-known piecewise linear maps, the Bernoulli
map and the tent map as shown in Figure 1. Using
a threshold function with threshold ¢ = 0.5 given by
eq.(3), we can get balanced and i.i.d. binary sequences
{©1(zn)}3L, from real-valued sequences {z,}72, gen-
erated by the Bernoulli map and the tent map. Their
auto-correlation function defined by

N-1
R(603) =+ (204 (2a) ~ )20, (2nes) 1) (4)

is known to tend to the delta function defined by

1 (¢=0)

so={1 470

(5)
as N — oo.

2.2 Correlated Binary Sequences

Let us consider piecewise linear onto maps such that
1 is a fixed point of the map.

7(3) = 5, that is, z = 1
Thus, the mapping function in the subinterval I.(3 3)

1

is given by

w(z) = ax a_l 1 1 <
A 2 27 2a] ="

1

* 2lal) - )
An example of such maps is shown in Figure 2.
The auto-correlation function of binary sequences
{©1(zn)}3Lo obtained by such maps, which is also given
by eq.(4), tends to a=% as N — oo [3]. It should be
noted that this is independent of the mapping functions
in other subintervals. Thus we can control the auto-
correlation property by the parameter a.

<1
2

3. Maximal-Period Sequences Based on
1-D Maps with Finite Bits

We construct one-to-one maps with finite bits based
on piecewise linear onto maps described in the previ-
ous section. This implies that such one-to-one maps
are one of approximations with finite precision (bits) to
chaotic maps. We use maximal-period sequences gener-
ated by such maps with finite bits. In other words, we
use a minimum precision (the number of bits) for a cer-
tain sequence length. This makes it possible to realize
cheap and high-speed generators of such sequences. It
should be noted that statistical properties such as auto-
correlation values of chaotic sequences of finite length
have some fluctuations from their theoretical values
which are obtained for sequences with infinite length.

In this section, we show that it is possible to de-
sign maximal-period sequences with constant auto-
correlation values for some time delays.

Here, define a vector form of a periodic binary se-

quence {B(zn)}75y (B(") € {0,1}) by
B’ = (B(:Cl)! A B(ZN—1)>B(‘E0)’ e 7B(£l—1))) (7)

which is a cyclic shift version of BY. Using the above
form, we can also write its auto-correlation function as

2
R(;B)=1- -NH(BO,B‘), (8)
where H(A,B) denotes the Hamming distance between
the vectors A and B.

3.1 Construction of 1-D Maps

We approximate piecewise linear chaotic maps by
plotting N pointson an N x N {z,, Z,+1)-plane. For ap-
propriate plottings, we can generate a maximal-period
integer sequence {z,}) 3 (¢, € {0,1,--- ,N —1}). In
the following sections, assume that we have such ap-
propriate plottings which generate maximal-period se-
quences. Furthermore, we obtain a binary sequence
{ON/Q(:L',,)},I‘\;OI. Note that N corresponds to 1 in the
original chaotic map with I = [0,1]. We also assume
that N is an even integer to get completely balanced bi-
nary sequences. We discuss auto-correlation properties
of such periodic binary sequences.
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Figure 3. Examples of 1-D maps with finite bits, where
N = 32.

3.2 Uncorrelated Sequences

Figure 3 shows examples of 1-D maps with finite bits
based on the Bernoulli map and the tent map, where
N = 32. In the subinterval I; in both types of maps, =,
is mapped to 2z, or 2z, + 1. On the other hand, in the
subinterval I5, z, is mapped to 2z, —N or 2z, —~N+1 for
the Bernoulli-type map and 2N —2z,, —1 or 2N —2z,, —2
for the tent-type map. In each subinterval of both types
of maps, just a half of the integers is mapped to I; and
the other half is mapped to I>. That is, On/s(2n) =
Ony2(2nt1) is satisfied for just a halfof n € I = [0, N —
1] and not satisfied for the other n. This implies that
the Hamming distance between G)?\,/z and @11\,/2 is given
by

H(®%2,Ohp) = >, ©®)
which, in conjunction with eq.(8), gives R(1;Op/2) = 0.
Furthermore, for N = 2% we can easily obtain

N
Oz Opp) =5 forlstsk—1, (1)
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Figure 4. Examples of 1-D maps with finite bits, where
N = 36.

which leads us to get R(¢;Opny) =0for 1 < €< k—1.
Note that for N = 2, we can generate such sequences
by k-stage nonlinear feedback shift registers or their ex-
tended versions [5].

3.3 Correlated Sequences

Figure 4 shows examples of 1-D maps with finite bits
based on piecewise linear onto maps with 3 subinter-
vals which generate binary sequences with exponentially
vanishing auto-correlations. The absolute value of the
slope of the mapping function in each subinterval is 3.
Hence we assume that N is a multiple of 6 in order to
let the number of integers in each subinterval be an even
number.

In each subinterval of Figure 4, just a half of the
integers is mapped to [0, N/2 — 1] and the other half
is mapped to [N/2, N]. In subintervals I; and I3, it
is obvious that O 5(2n) = Opnyo(2n41) is satisfied for
Just a half of n € [0, N/3 — 1] and n € [2N/3,N — 1]
and not satisfied for the other n. However, © Ny2(En) =
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Figure 5. Conceptual diagram of constructed maps for
general cases.

Ony2(Zny1) is satisfied for all n € I» in Figure 4 (a) and
not satisfied for any n € I5 in Figure 4 (b). Hence we
have

for Figure 4 (a)

H(®Y5,0n5) = (11)

o.l% w| =

for Figure 4 (b)
which, in conjunction with eq.(8), gives

1
3 for Figure 4 (a)
R(1;0p)) = 1 (12)
-3 for Figure 4 (b).

The above auto-correlation values agree with the theo-
retical ones for the original chaotic maps given by a~!.

Now consider more general cases. We construct 1-
D maps with finite bits based on piecewise linear onto
maps as shown in Figure 2. Let us assume the slope
of the center subinterval I.(3 —;—) is a = :i:%, where
N = 2m + 4¢, m and ¢ are positive integers. Figure 5
shows a conceptual diagram of the constructed map of
mtegers.

Similarly to the previous special cases as in Figure 4,
we plot mapping points so that just a half of the integers
could mapped to [0, N/2 — 1] and the other half could
be mapped to [N/2, N]. Thus we have

N
2¢ fora_2——-

(1)

2¢c+2m fora=——r0
2m

H(O?V/Z’ @}V/z) =

which, in conjunction with eq.(8), gives

2m 1 N
N T re=gn
R(1;0py),) = 9m (14)
TN T T, fra=-—oo
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Figure 6. A design example of maps for a = —4.

This also agrees with the theoretical one a=!. Therefore,
we can design maximal-period binary sequences with a
constant auto-correlation value at the time delay £ = 1
by the above method. Figure 6 shows a design example
of maps for a = ~4.

4. Conclusion

We have given design methods of maximal-period se-
quences with prescribed constant auto-correlation val-
ues for some time delays. It has been shown that both
of uncorrelated and correlated binary sequences can be
designed for time delay 1. We will discuss such design
for more time delays.
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