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Abstract: In the present paper, we will focus on the
characterization of the biological network behaviour, in
terms of synchronization and desynchronization of the
measured signals by Micro Electrode array. We evaluate a
easy calculable estimator that implies de/synchronization
property of the biological neural network.

1. Introduction
Forward the classic picture of information processing
based solely on firing rates (the average number of action
potentials for unit time, a “rate code™) of a neuron, or at
least a little group of neurons, the extension of the analysis
of the temporal dynamics of neuron network beyond the
ordinary scale of milliseconds, discovered evident
complex oscillatory and periodic behaviour, based on the
precise timing of single action potentials. The resultant
system is intrinsically non linear and in some conditions
chaotic.
Our goal is to show how the description of a complex
biological neural network, under the signal processing
viewpoint can be performed at high abstraction level using
the synchronization analysis of a coupled array of
oscillators.
Moreover the problem of non linear network
synchronization might treat the synchronization as the
result of network stimulation, and any network data
processing capability as the reduction of dynamics
dimensionality.

2. Design
The biological system is composed by a network of
neurons cultured in vitro. Using a microelectrode array
(MEA), network can be kept alive for a long-term
recording. Studying how the network processes and
encodes informations, we utilize the following
experimental set-up (based on the tools for
elettrophysiological studies)
A Micro Electrode Array (MEA) composed of 64 (8 x 8
grid) ITO electrodes on silicon substrated (figure 3a,b)
was placed in a faraday cage to avoid electromagnetic
interference. Electrodes were 50um x 50um (250pm
distance) for electrical stimulation and 30um > 30um
(150um distance) for recording. Signals were costantly
monitored by a real time oscilloscope.
Long term acquisition instrunmentation: a BioLogic DTR-
1802 Digital Tape Recorder with a maximum of 8
recording channels, at the sampling frequency of 12kHz,

and a GPIB Interface. 8 channels amplifier and filtering
stage (gain=100).
The set up was completed by:
s Systems for network electrical stimulation
(scanner, stimulation interface, and isolator).
e PC for off-line data management, equipped with
National Instruments AT-MIO device.
The biological part of the MEA was composed by in vitro
culture of spinal cord neurons from chick embryo (7-8 days

old). Cells yield by this procedure were about 1.5x 106 cells
per embryonic cord and plating density was 4x103 - 5x105

cells’em?, The cultured was maintained at 37°C in an
atmosphere of 5% Cop and 95% of air saturated with water

vapour. Cultured medium was changed every 3-4 days.
3. System simplification

The neural network activities were recorded by amplifiers
and A/D converters producing a real-time signals.

The activities were measured at all the available
microelectrodes. It was evaluated the non linear cross-
correlation index between the all measured signals, and
afterwards the three globally less correlated were identified
and selected. In Figure 1 we report the recorded activity of
the network in absence of stimulation.
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Figure 1: Three channels reordered activity of the
network
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We can observe that the behaviour of the different output
signals is characterized by a synchronized activity, i.e.
highly correlated. We suppose that the system in this status
performs a significant distributed processing. This status
depends on both the topological connections between the
neurons and the stimuli given to the network.

Biological neural network can be seen at a coarse grain, as
a cluster system where each cluster consists of multitude
of neurons, the number of cluster is fairly small, and the
connection among the clusters results from the
interpolation of many intercluster synapses at the neuron
level. Therefore the oscillatory activities are a function of
the connectivity (excitatory or inhibitory), at the cluster
level [5]{6]. From now we will consider each cluster as a
formal neuron.

4. Modelling
4.1 General formulation
Starting from these observations, we consider a formal
neuronal network as a coupted of chaotic oscillators.
Let there be N chaotic oscillators. Let x; be the m-
dimensional vector of dynamical variables of the ith node.
G is the connection matrix that brings information about
geometry and the weights of the connections and subject

to ng,.j =0, Vi. H:R" 5> R" is an arbitrary

function of each node’s variables that is used in the
coupling.
Let the isolated (uncoupled)
%= Fx)+X, g H(x)).
This kind of coupled oscillators, studied by Pecora {1] [2],
can be modelled by the following equation:

) x=F(x)+G®H(x)

where:

dynamics  be

s X= (xl 3 Xy ot X, )T is a vector that contains

all the neuron state variables, where x; is the state
variable of the i-th formal neuron

o F(x)=(F(x),F(x,),...F(x,)),
H(x)=(H(x,),H(x,),...H(x,))
e & is the direct product, defined as
4,,B(x,) 4,,B(x,)
A®B(x) = : :
A, B(x,) A4,,B(x,)

In determining the stability of the synchronous states, we
follow the method suggested by Carrol et al [1][2].
We evaluate the variational equations of (1), considering

& be the ith node, and
& =(£,,4,,...£,) be the collection of variations. Then
we get the following equations:

@ é=l,®Df +GO®DH):.

By diagonalizing G (remark that the transformation does
not affect the first term since it acts only on the matrix

variations on the

1 » )» We obtain block diagonalized variational equations,
with each block being as following:

©) &k = (DF + A4 DH )¢ .
Since that DF and DH are evaluated on the synchronization
manifold (defined by the constraints X} = X =+ ) B

they are the same for each block. We can get the Master
Synchronization Function by computing the largest
Lyapunov exponents of the generic variational equation as
following:

@) ¥ =(DF(x)+ ADH (x))y

for each A being a non zero eigenvalue of G.

After Carrol et al [1]{2], when the largest Lyapunov
exponent of a single generic variational equation (4) is
negative, the synchronization of the coupled array of
oscillators (1) occurs.

4.2 System model
For the formal neuronal network, we assume the following
hypothesis:
1. Oscillators are identical and they are coupled
according to the same pattern
2. The synchronization manifold exists (defined by

the N-1 constraints X; = Xy =---X,)and it is
an invariant manifold.
3. The i — th formal neuron can be approximately
modelled as the following Roessler-like oscillator
dx;’

—-= —k(ax;' +bx;? +ox)

dx? ] 2
(&) ek k(x; + f%)

dx-3
— =k’ -2

where the non-linear function g(x,‘ ) is replaced by:

_ 0 fu<l
8=V 1y fusL

where u(x,l) = wc,-‘ —(-a),, with L,Vp,,a are

parameters of the system.

In order to apply the above model, we have first to specify
the G and H matrices for a minimal number of formal
neurons. There are many reasons for considering not less
than three neurons, e.g. the possibility of having partial
synchronization in the system (say oscillator 1 and 2, and
not 3) in addition to total synchronization /
desynchronization. More than three is not required here.
The matrix G for three coupled oscillators can be taken, as
suggested by Pecora er a/ [1][2] for a universal probe of the
synchronization properties:
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Remark that other kind of interconnection matrix can be
chosen to describe the possible interconnections between
the formal neurons.

For simplicity we will also assume, without loss of
generality, the following linear coupling matrix H:

100

7

H)=000 ™
000

Under the general requirement that G s
3x 3 diagonalizable_real-valued matrix with zero-row
sum, its eigenvalue A can assume the values

{O,£+i5,£—i§} [3]. By eqn. (1), (6), (7) the formal

1 1 177
911%1 +G12X2 + G413X3

F(x,)+ 0
0
X GioX{ + 922"; + 923":11
Xy |=|F(x)+ 0 (8)
X, 0

ga1Xi + Qszx; + 0333
F(x3)+ 0
L 0

ny
neuronal network can be expressed by the following:

The model in (5) can be easily implemented as an
electronic circuit as shown in Figure 2:

Figure 2: Ressler-like oscillator circuit

4. Simulations
In our simulation, first we derive the syncronization
conditions for the theorical model reported in (1), and
afterwards we compute the property of syncronization
from the signals measured by the biological neural
network.
We evaluate the Master Stability Function, valuing the

value of & and keeping 8=0.

Figure 4 represents an average over N steps to obtain a
prediction of Lyapunov exponents of the variational
equations with parameters £=-1,6=0 . In our three
variables system the basic condition to reach stability
(which coincides with the synchronization of the coupled
array of oscillators) is to have one Lyapunov exponent
equal to zero and the others negative [4].

Figure 3: : Iterative estimate of Lyapunov exponents with
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e=-1,8=0.
Significant values are at the end of period
As shown in fig 4, the behaviour of the whole system is
synchronized. This result is provided by the value (less than
zero) of the greatest Lyapunov exponent. This value is
caused by the chosen interconnection, depending on the
selected parameters.
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Figd: a) x,3 ,x% , xg temporal behaviours

b) Power spectrum
Fig. 5 shows estimation of Lyapunov exponents of the
variational equations with parameters £ = 3 . 6=0.
Desynchronization of the circuit arises because the greatest
Lyapunov exponent is greater than zero.

Fig 5: Iterative estimate of Lyapunov exponents with
e=3,6=0.

Significant values are at the end of period
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Figure 6 shows the desynchronized behaviour of the
coupled array system.
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Fig6: a) x},x3,x; temporal behaviours

b) Power spectrum

5. Results
Let us analyse an experimental cultured neuron network at
high abstraction level as shown in Fig.1 and described by
(3.
Under the hypothesis that the G matrix fulfils the
fundamental requirement above and that the choice of the
clusters is well balanced, we evaluated the map in Fig. 7.

Fig 7: MSF (Master synchronization function)

For some & +i0 we had the possibility to measure the
value of the largest Lyapunov exponent from the data
measured at the MEA electrodes, evaluating

©  min g e jurzaft " O-xi -7, )

where x,m is the measured signals from the ith

microelectrod, 7 is a delay-time and X is a set of (£,0)

that implies synchronization or desynchronization evaluated
by the theoretical surfaces shown in Fig. 7.

As a furher results, we can evaluate the A of a specific
network over a contour plot of Figure 7, estimated by egn .
(9). We can use the curve in plane (£,8) as a map of the

change that the network undergoes time after time dued to
different stimuli.
In different situations the strength of the interconnections is
changing, as well as the network synchronization. This is
allowed by the fact that the synapses are far from constant
connection weights.
Moreover, it is demonstrated that the analysis of
synchronization, according to our approach, is a powerful
tool for studying both the processing and the learning of the
network and the parameter A is a straightforward index of
the network adaptivness.

6. Future works
In future work the trajectory in the (£,0) plane followed

by a network will be related to its internal learning process.
Comparing equations (1) and (4) it is straightforward that
we have a strong simplification. In equation (4) the role of
G is limited to the value of £+ i . In other words solving
the synchronous problem, as expressed by equation (4),
against each £+i0 , any interconnection pattern is also
solved. This is a strong result for the study of the
synchronous status of biological networks interconnected
according to random patterns.
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