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Abstract: Two-dimensional (2-D) digital filters
are widely useful in image processing and other 2-D dig-
ital signal processing fields, but designing 2-D filters 1s
much more difficult than designing one-dimensional (1-
D) ones. This paper provides a new insight into the ex-
isting singular value decomposition (SVD)-based design
approach in the sense that the SVD-based design can
be performed more efficiently by exploiting the symme-
tries of the given 2-D magnitude specifications. By us-
ing the specification symmetries. only half of the 1-D fil-
ters (sub-filters) need to be designed. which significantly
simplifies the design process and reduces the computer
storage required for 1-D sub-filter coefficients. Another
novel point of this paper is that an objective criterion
is proposed for selecting appropriate sub-filter orders in
order to reduce the hardware implementation cost. A
design example is given to illustrate the effectiveness of
the SVD-based design approach by exploiting specifica-
tion symunetry and new order-selecting criterion.

1 Introduction

Two-dimensional (2-D) digital filtering is one of the
most fundamental and most important processing tech-
niques in digital image processing and other 2-D digital
signal processing fields. Up to tiis point, many meth-
ods have heen developed for implementing and design-
ing 2-D digital filters, among the developed techniques,
the indirect approaches that decompose the original 2-
D problems into 1-D ones have received considerable
attention. The reason is that the 2-D problem can be
easily attacked by solving a set of easier 1-D problems
through using the accumulated 1-D techniques, thus the
original 2-D problems can be indirectly solved in an el-
egant way. The SVD-based approaches have been de-
veloped in the frequency-domain by a few researchers
in an increasingly improved manner as follows:

(1) Separable 2-D filter with only one section [1].

(2) SVD-based 2-D filters with biased circuits {2].

(3) ISVD-based 2-D filters without biased circuits [3].
(4) Nonnegative decomposition-based design [4].

(5) SVD-based non-quadrantal symmetric design [5].
(6) SVD-based design with different sub-filter orders [G].

This paper is aimed to further advance the SVD-based
design methods (5) and (6) in the following aspects:

e By exploiting the symmetries of the desired 2-D
magnitude responses, we show that the design of 1-
D sub-filters can be significantly simplified, which

means that only one 1-D sub-filter in each parallel
section needs to be designed, and the other one
has identically the same filter coefficients as the
designed one.

e An objective error criterion is proposed for select-
ing the appropriate orders for different 1-D sub-
filters such that each sub-filter contributes to the
final 2-D filter design accuracy at the same extent.

A design example is given to illustrate the effectiveness
of the above two points.

2 Design Using Symmetries

In this section, we briefly review the mirror-image sym-
metry and mirror-image anti-symmetry exsiting in the
SVD of the desired 2-D zero-phase frequency response
[5], and then exploit a new symmetric property that
can be efficiently utilized in the SVD-based design for
simplifying the 2-D filter design process.

2.1 Symmetry and Anti-symmetry

As proved in [5]. both quadrantally symmetric and
non-quadrantally symmetric 2-D zero-phase frequency
responses can be approximated by using the singular
value decomposition (SVD) method, which decomposes
the original zero-phase 2-D digital filter design prob-
lem into the problems of designing zero-phase or —m/2-
phase 1-D sub-filters. The design approach can be
briefly reviewed as follows. Assume that Hj(w;,ws)
is the desired zero-phase 2-D frequency response, and
My(wy,w2), 84(w1,ws) are the corresponding 2-D mag-
nitude and phase specifications, respectively,

Hy(wy,wz) = Mg(wy., wp)e?®4“192) = My(wy,wp) (1)

where wy,wy € [~m,7]. By using the equally-spaced
samples of Hy(w;.ws ). we can form a specification ma-

trix Lx M
A = [Hy(wyi. wom)] € R*
where '
o= -7+ 2r{l - 1)
in= 71
W = —7 + 2n(m — 1)
2m — M —1
The SVD of the matrix A results in
r r
A= Z oiuvl = Z'&.iiiﬁ (2)
i=1 i=1
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where r is the rank of the matrix 4. and the singular
values oy > 02+ >0, >0

u; = Jou;

The columm vectors @; and @; are either mirror-image
symmetric or mirror-image anti-symmetric simultane-
ously [5]. In the SVD-based design of zero-phase 2-D
filters. only the first K pairs of @;. 9; are used. and the
others are neglected as

o} = \/o;v}. (3)

K
An A=) udl (4)

The normalized root-mean-squared (RMS) decomposi-
tion error is

By = 1A-Al
-1 .
T r /2
> ] ( > ) (5)
li=K+1 _ \i=K+1
- T Baad r 172
(ool (5
i=1 i=1
where || - || denotes the Euclidean norm.

After truncating the last several @, ¥;. the remain-
ing u;.v; can be regarded as the desired frequency re-
sponses of zero-phase or —n/2-phase 1-D filters Fj(z;)
and G;(z;) respectively, and the sub-filters Fi(z;) and
Gi(22) are separately designed by using the existing 1-D
design techniques.

2.2 New Symmetry
If Mg(w;.w2) is symmetric with respect to the
straight lines wy = wy and w; = —wy, then the SVD

in (4) generates the vectors u;, ¥; that satisfy either
'l.ii = t;i or 'd-; = -—v}-.

Proof: Let
H=[h;]. 1<i.j<2N (6)

be a rea]l 2N-by-2N matrix whose elements satisfy

hij = hany1-iaN+1-;
and assume that the matrix

g _ | Hi H
H_[I.I; Ih] (7)

has distinct singular values, If matrices Ty, Iy are
the N-by-N backward permutation matrix and N-by-N
identity matrix defined by

i 1T

1 0
Iy = (9)
0 1
1
and the matrix I is formed by using the matrices I N
and Iy as
. Iy O
I= [ o Iy ] (10)
then we can verify that the matrix
H=IHI
can be expressed in the form of
~jgi-[ H1 H:
H_IHI._[HZ o ] (11)
where H;., H; are N-by-N matrices,
HIZIEIIFiNﬂézN (12)
H2 = HzIN = INH3.
The SVD of H results in
H = IHI
= Uzv?
= [ U; U2 U N ]E[ vy U2 V2N ]t

where u;, v; are the normalized eigenvectors of H H*

and H'H, respectively. and X is a diagonal matrix with
the singular values o; as its diagonal elements, i.e.,

3 =diag(oy o092 OaN).
From (13) we obtain
H = IUnV'i
= (IU)Z(IV)!
(13)
where
W= I[u u Usn | (14)
IV= I[v: v van .

If u; and v; are simultaneously mirror-image symmet-
ric, then’ '
Fu: = | Fi Fo. = | Yi

Tu=[ 71 ]. Iv...[y:]. (15)

Otherwise, u; and v; are simultaneously mirror-image
antisyminetric, i.e.,

Ju: = | i To. =1 Y
hu=[ % ]. o= % 1. ()
If M4{w1,ws) is symmetric with respect to the straight

line wy = wy, then we can verify that H, is a symmetric
matrix, i.e.,

I-I1=.EI§. (17)
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Similarly. if Mg(w;.ws) is also synunetric with respect

to the straight line w; = —w,. then HyI i is symmetric,
ie..

Hyly = (HoIy)'. (18)
The symmetries (17) and (18) together with (12) lead

to .
H, = H,
H, - H. (19)
Since
t H;, H, H! H!
HH [Hz Hl][Hi H
_ %+H2H§ H1H%+H2H§
_HZH +HH, HH,+H;H,;
and
tgy _ | HY H; H, H;
HH = | g Hg][Hz H, |
— [ %H1+H¥ }H2+H?H1
- | HyH,+HH, H;H,+ H H,
it is evident that H is a normal matrix, i.e.,
HH'=H'H.
Substituting (13) into (20) and (20) obtains
t
HH' = (IU)sS(ivy [(IU) vy
= (IU)SUV)'(IV)S(IU)
= (IU)Z*(IUy (20)
and
H'H = [IU =(1V) ] (IU)s(Iv)
= (IV)BIU)(IU))2IV)
= Jv)z*davy (21)
thus N . N .
(IS (IU)Y = (IV)S*IV) (22)
which implies
IU=1Vv & U=V (23)
or _ R
U = -1V = U=-V. (24)
Consequently. we can conclude that
U =V; O U; = —V; (25)

where u; and v; are either mirror-image symmetric or
mirror-image anti-symmetric as shown i (15) and (16).
The new symmetry (25) can be utilized to design 1-D

sub-filters Fi(z1) and G;(z2) efficiently. If we use F;(z;)
to approximate u;, and set the coeflicients of another
sub-filter G(27) identically the same as those of Fy(21).

i.e..
Gi(z2) = Fi(22)

then T;F;(z2) approximates v; just as Fi(z;) approxi-
mates @;. where

T{1

As a result, ouly sub-filters Fy(2;). Fo(z1).- . Fg(z1)
need to be designed, and T;F;(22) can be readily ob-
tained. This symmetry exploitation can

if 4; = v;
if :‘l,, v'v.,'. (26)

o reduce the design work by 50%.

e save the computer storage for sub-filter coefficients
by 50%.

Replacing the sub-filters Gi(z2) in Fig. 1 by T;Fi(zs)
leads to the new parallel structure as shown in Fig. 1.

2.3 Order-Selecting Criterion

An important step in SVD-based 2-D filter design
is how to select the orders of 1-D sub-filters for ap-
roximating different vectors w; and ¢;. Most existing
1§VD based designs use the same order for different 1-D
sub-filters [5]. but the only one exception proposed in
[6] utilizes different orders for different @; and #;. That
18, low-order sub-filters are used for low-energy vectors,
and high-order filters are for high-energy vectors. This
paper will show that this order-selecting policy is not
appropriate since lower order sub-filters cannot achieve
good approximations to the last several vectors whose
elements hecome more and more irregular (zigzag) as
the number of parallel sections increases. Instead, we
propose a new objective criterion for selecting appropri-
ate sub-filter orders not only based on the vector energy
but also based on the irregularity of vector elements.
First. let us define a set of approximation errors. As-
sume that f.; and g, are the actual vectors for approx-
imating 4; and v;. respectively, and that the approxi-
mation error vectors are

Auz ~— uz - fi
Av; =0; —g,. (27)
Clearly. the normalized RMS errors are
flui = fll _ JlAu)
ey = — = (28)
“' flees | Voi
cp, = o: — g:ll _ lAvi] (29)

ol voi
It should be noted here that relatively large approxima-
tion errors e, and ey, do not necessarily affect the final
2-D design accuracy significantly. On the other hand,
too large errors ey, and ey, do not contribute to the
improvement of the final 2-D design accuracy anymore,
and thus those extra f; and g; should be completely re-
moved. Based on this phllosophy, we should select the
orders of 1-D sub-filters Fi(z;) and G;(z3) by consid-
ering how the individual errors ey, and ey, affect the
whole design accuracy.

In this paper, we define the following normalized
RMS approximation error

Ej, = ﬂiﬂiﬁﬁﬂ % 100% (30)
E,, = %‘E‘L” x 100% (31)
where
K
A= Y adl+ f0) (32)
i=1(i#])
K
A, = Z w;0; + U;g5. (33)
i=1(i#§)

The orders of 1-D sub-filters F;(z;) and G;(z2) are se-
lected such that the approximation errors Efy;, E,; are
alinost the same for all the vectors f; and g;, where
j=12,--- K.
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3 Design Example
[Elliptical Filter|: The desired My(w;.w,) is

1 0w, <wp
We — W
Md(wl.wz) = (;a_____y) Wy < Wy <wa (34)
(wa —~ Wy
otherwise
wlere
-2
. A
wy = Wi + == (35)

wp = 0357, we = 0.507

W ] cosa  sina w1y

{ W ] - [ —sina  cosw ] [ wa ]
The the 2-D magnitude specification satisfies the new
symmetry, and thus the 2-D filter can be efficiently de-
signed.

To form the specification matrix A. the frequencies
wi.wy € [—m.w] are equally sampled at the step size
7 /40. and then the corresponding samples My(w; . wapm,)

are used to construct A € R¥ "%,

In [6]. the first 12 sections are approximated. i.e..
K=12, the normalized RMS decomposition error is
1.0983%. When the sub-filter orders mf[ﬁ} are used. the
normalized mdgmtude response error of the designed 2-
D filter is 2.0777%. In our design. we just use the first
8 channels, the decomposition error Ej is 1. 7094%, and
the new order-selec ting criterion is applied to the selec-
tion of 1-D sub-filter orders such that the errors Ey and
E, defined in (30) and (31) are below 1.7200%. The
ma,gmtudo response of our designed 2-D filter is plotted
in Fig. 2. whose normalized RMS error is 1.8373%. By
comparing our design results with those in [6]. we can
make the following conclusions:

’ll'
x = —Z. (36)

¢ Exploting the new symmetry in the SVD-based 2-
D filter design enables us to accomplish the design
by designing only 8 sub-filters. but 24 sub-filters
need to be designed in [6].

e The number of our total multiplier coeflicients is
142, which is less than 50% of the total multiplier
coefficients (292) used in [6].

o Qur design error (1.8373%) is smaller than that
(2.0777%) by the method [6].

That is, the new SVD-based technique can achieve
higher design accuracy with significantly reduced de-
sign complexity and much less hardware implementa-
tion cost than the design approach [6).
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