Average propagation delay in a ripple adder
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Abstract: An expression for the average carry
propagation delay in a ripple carry adder is
obtained which is exact up to terms of the order

O(n™' Inn). The case of several adders
working in parallel is also considered.

1. Introduction

A synchronous self-timed system consists of a
number of functional units equipped by
completion detectors. Initially, with a new clock
pulse, completion its are cleared by the
completion detectors circuitry when the
operation being performed by units is completed.

An AND gate is used to signal to the
clock generator that all units completed their
operations and a new clock pulse can be issued.
With this approach, the throughput of a system
becomes considerably higher compared with the
systems using traditional approach, when the rate
of clock pulses is determined by the longest
possible propagation delay in the functional
units. In this paper we evaluate the potentials in
speeding up for the case when we have only one
functional unit that is a ripple carry adder. A
more general case of m ripple carry adders
operating in parallel is also considered.

An estimate of the average carry
propagation delay was first obtained in [1]. A
tighter upper bound was obtained in [2]. This
paper presents a much simpler analytical
approach that yield an expression for the average

delay which is asymptotically exact with the
. Inn .
remainder of O(——), where 7 is the number
n

of full adders in the ripple adder.

By definition, the propagation delay in a
combinational circuit is the duration of the time
interval between the moment when all the input
signals are stabilized and the moment when ali
output signals are stabilized.

Propagation delay depends on both the
present inputs and on the inputs immediately
preceding to the present ones. Often the term
“propagation delay of a circuit” is used to denote
the upper bound of propagation delays for all
possible inputs.

Denote by 7 the maximum propagation
delay in one full adder. It is clear that in the
worst case the propagation delay of n-bit carry
ripple adder is equal to n7 . This value is used
to determine the clock frequency of a
conventional (not self-timed) system. In this
paper we will show that in the average case the
propagation delay is much smaller than n7 . In

fact it is equal to 7(log, #—c), where ¢ isa

constant approximately equal to 0.668.

It follows from this result that a 64-bit ripple
carry adder can work on average almost 9 times
faster if the self-timed approach is used.
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2. Stabilization time determined by
stoppers and runners.

Consider a ripple carry adder that consists of n
full adders. We assume that the input bits

A yesAyiB, s By; Co

are independent random variables taking on
values of 0 and 1 with equal probabilities. At
time 7, the output carry for some full adders
will stabilize.

In particular, if 4, =B, =1
then C,=1 in 7 and C, will not change
thereafter unless a new set of inputs is applied.

Similarly ¢ then C;=0in 7 and C,
will not change thereafter unless a new set of
inputs is applied.

Hence if, for example, for every i

A, = B, then the carry propagation delay will
be less than or equal to 7 and all the outputs of
the adder will be stable at time 27 .

In fact, the actual time depends on the
values of carries that appeared as a result of
computation with inputs immediately preceding
the present ones. In the most unfavorable case,
however, the carry propagation delay is
determined by the maximum number of
consecutive bits of the input for which 4, # B,.

Let us call input values 4; = B,

“stoppers”, and values A, # B, “runners”.

Obviously, for completely random inputs,
stoppers and runners occur independently with
equal probabilities.

Denote stoppers by 0 and runners by 1.
Then the total stabilization time T = 7(L +2),
where L is the random variable that is the

maximum length of 2 run of consecutive 1’s in a
random sequence of 0’s and 1’s.

3. The average propagation delay in a
ripple carry adder.

As known in previous section, the propagation
delay in a ripple carry n-bit adder is a linear
function of the maximum length of a run of I’s
in a random sequence of zeros and ones of length

n, where the bits take on values of (0 and 1 with
equal probabilities.

Thus the problem is reduced to the
following: find the distribution of the maximum
length of a run of 1’s in a random sequence of
zeros and ones.

Denote by W (1, n) the number of such
sequences where the maximum length of a run of
1’s is smaller /.

The cumulative distribution function
(cdf) of the maximum length L of a run is given

by
F,()=Pr{L<l}=W(,n)-2" )

It is easy to see that ¥ (I, n) satisfies the
following recurrence equation:

wWiny=2-W(l,n-)-W(l,n-1-1) 2)

with the boundary condition

w(,1-1=2" 3)
It is well known that for large # the

solution of equation (2) is asymptotically equal
to

w(,n)=a(l) X/ @

where X is the largest real root of the
characteristic equation:

X" _2x'+1=0 (5)

Substituting into the bounding condition (3), we
obtain:

a()y=2""x0 (6)
Hence,
W(l,n)=2"" x ™

The largest root of (5) can be expressed
asymptotically for 2*1 >> 1, which gives a
good approximation of X, :
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‘ 1 a e
X, =20 —5—,5:—1)+0((2’ '-D™) ®
Hence, asymptotically,

1
W(,m)=2"(1 —F—_—i)" . ¢

Thus, from (1) and (9) the cdf of L is

| SN
F(=0~ g™ (10)

The expected value E[L] is given by

BlL]=Y (1-F, (1) an

For large 7, the function F, (/) changes very
rapidly from 0 to 1 in a narrow region.
Therefore, a good estimate of E[L] is given by

E[ll=1,,, where [, is the root of the
7] y %
equation:

i
Fh=5 a2

Solving (12), we obtain:

n Inn
[, =log, ——+O(— 13
% 082 2In2 ( n ()

Note that for large 7,

Inn

FL(lyzj:k)=2'2“(l+O( 2%Y) (9

n
Expression (14) allows us to obtain an accurate
evaluation of E[L] using (11).

E[L]=log, n—c+O(™™ (15)
n

where ¢ is a constant ¢ = 0.66751...
Finally, we obtain that the average propagation
delay in a ripple carry adder is approximately

T =7(log, n+1.332) (16)

Let us consider now another version of the
problem. Suppose, we have m such 7 -bit
adders working in parallel. Then the delay is
equal to the maximum delay among all

m adders. The latter is proportional to the

maximum length L_, of the runs of 1's inall
m adders. The cumulative distribution function
of L., is

Lo 1) = F (17
As a result, the expected value of E[L_, ] is:

ElL,..]1=log, mn—0.668 (18)

4. Conclusion

The results obtained above give the exact value
of the average carry propagation delay up to

Inn L
terms of order O(——) for randomly distributed
n

input values. The important fact is that, because
of the narrowness of the delay distribution, the
time variations of the delay are rather limited. In
the case of m adders working in parallel, the
average delay increases quite modestly by

Tlog, m.

It is interesting to compare the results
obtained under the assumption random input
statistics with empirical data. There exists
experimental evidence [3] that data arithmetic
operations carry propagation chains can be very

long, exceeding % .

One possible explanation of this effect
is that very often in such computations a small
number (that has a long run of 0’s starting with
the leftmost digit) is subtracted from another
small number, which creates a long sequence of
runners. If this is the case the situation can be
corrected by special means with small hardware
overhead.
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