Oscillatory modes generated by Hopf bifurcations in coupled four oscillators
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Abstract: We examine the oscillatory modes gener-
ated by the Hopf bifurcations of non-origin equilibrium
points in the four-coupled oscillator system. The Hopf
bifurcations of the equilibrium points and the generated
oscillatory modes are classified. By numerical bifurca-
tion analysis we observe various interesting synchronized
states caused by symmetry-breaking bifurcations.

1. Introduction

Systems of coupled oscillators are widely used as models
for biological rhythmic oscillations such as human cir-
cadian rhythms [1,2)], finger movements [4], animal lo-
comotion [3], swarms of fireflies that flash in synchrony,
synchronous firing of cardiac pacemaker cells [5, 6}, and
so on. Using these coupled oscillator models, many in-
vestigators have studied the mechanism of generation of
synchronous oscillation and phase transitions between
distinct oscillatory modes. From the standpoint of bi-
furcation, the former and the latter correspond to the
Hopf bifurcation of an equilibrium point (or the tangent
bifurcation of a periodic solution) and the pitchfork bi-
furcation (or the period-doubling bifurcation) of a pe-
riodic solution, respectively. Using group theoretic dis-
cussion applied to the coupled oscillators, we can derive
some general theorems concerning with the bifurcations
of equilibrium points and periodic solutions |7].

In the study of coupled oscillator system, the four-
coupled oscillator system is one of the most interest-
ing system, because there exists an irregular degenerate
oscillatory mode (or an independent pair of anti-phase
mode) [8,9] when the equation of the single oscillator is
invariant under inversion of state variables.

Mishima and Kawakami studied the oscillatory modes
generated by the Hopf bifurcations of the origin (equi-
librium point) in several systems of coupled four BVP
(Bonhofler-van der Pol) oscillators {10]. However, they
only considered the Hopf bifurcation of the origin, be-
cause only the Hopf bifurcation of the origin is super-
critical. Tsumoto et al. investigated bifurcations of the
Modified BVP (MBVP) equation [11]. In the MVBP
system, the supercritical Hopf bifurcation of non-origin
equilibrium points occurs.

In this paper, we examine the oscillatory modes gen-

erated by the Hopf bifurcations of non-origin equilibrium
points in the four-coupled oscillator system . The Hopf
bifurcations of the equilibrium points and the generated
oscillatory modes are classified. By numerical bifurca-
tion analysis we observe various interesting synchronized
states caused by symmetry-breaking bifurcations.

2. Method of Analysis

We consider the coupled MBVP oscillator system shown
in Fig. 1. The circuit equation is described as

ng;—? = —Ryig1 — v
diy .
L2—d% = —Rairz — vk (1)
d
C—dzitk- = ik + k2 —~ g(uk)
—Go(20k — Vkg1 — Vk-1) — Gp(Vk — Vk12)
(k=1,---,4, vo = v4, v5 = V1, V6 = v2),

where the nonlinear conductance g(v) is assumed to be

1
g{vg) = —vg + §U2 (2)

The values of system parameters are fixed as {11}

L' =02, Ly =0.06, Ry = 4.0, R, =21, C™' = 3.0.
3)

The Jacobi matrix of Eq. (1) is described by

Xo X1 X2 Xy

X1 Xo X1 Xq (4)

Xz X1 X() X1 )

Xi X2 X1 Xo

Each block is given by

DF =

[ —RL]! 0 .
Xo = 0 —R,L3! ~-Lz!
| ¢! C! CY1-v3)+2da+dp
0 0 O 00 0
X;=[00 0 |, X2=]00 0
| 0 0 —do 0 0 —dp

where v, is a coordinate of an equilibrium point, d, =
~C71G, and d, = —C~'Cs. Using orthogonal matrix
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Figure 1. MBVP circuit (a) and coupled system (b).

given by
V21 I 0 1/V21I
1 | 1/V21 O I -1/V2I
Q=E 1V2I -1 O 1/V21I ©)
1/V2I O -1 -1/v21
we diagonalize the Jacobian matrix (4) as:
Y O O O
- O yhaw 0 O
QTDFQ=| 5 5 v o (7)
O 0 0O Y,
where
Yo = Xo + 2X; + X, (8)
Y = Xo - Xo, (9)
Y = Xo — 2X1 + Xo. (10)

In the next section we classify the oscillatory modes gen-
erated by the Hopf bifurcation in each block Y} (I = 1,
2, 3) in Eq. (7).

3. Results

In Eq. (1) there exists four equilibrium points satisfying
2

2 i -
v2) = v2, = vZ; = v2;; those are (V.1, Vs2, Va3, Vaa) = .

(0, 0, 0, 0), (0,1, ai, ai, al), (az, —az, 4z, —az) and (a3,
as, —as, —a3). Here we study the Hopf bifurcation of
equilibrium points (a2, —asq, a2, —a2) and (a3, a3, —as,
—a3) named type 1 and 2, respectively.

Figure 2 shows a bifurcation diagram of type 1 and
2 equilibrium points. In this diagram, the line ,,h; in-
dicates the Hopf bifurcation set of the type m (1 or 2)
equilibrium point and of the block Y;. In the shaded
region | | and mewssd the stable type 1 and type 2
equilibrium point exists, respectively. Thus, supercriti-
cal Hopf bifurcation sets are 1hy, 1ha, 2y and 3hy. In
Tab. 1 we summarize oscillatory modes generated by
Hopf bifurcations shown in Fig. 2.

The closed circle in Fig. 2 indicates the Hopf-Hopf
codimension -two bifurcation point {12]. From this point
- the Neimark-Sacker bifurcation sets of periodic solutions
generated by each Hopf bifurcation appear.

We show in Figs. 3 and 4 waveforms of a pair of in-
phase generated by 1hs and a pair of anti-phase gen-
erated by 2hq, respectively. By changing the values of
coupling coefficients d, and dp, symmetry-breaking bi-
furcations (the pitchfork bifurcations) occur and the so-

00 20 40 60 80 10
da—‘—>

Figure 2. Bifurcation diagram of equilibrium points ob-
served in Eq. (1).

lutions of Figs. 3 and 4 bifurcate to those of Figs. 5 and
6, respectively.

After the bifurcation the amplitude of oscillator @
and @ (® and @) is different, but the in-phase synchro-
nized state between @ and ® (@ and @) is kept (see
Fig. 5). It is quite interesting that the single MBVP is
not a hard oscillator, but in the coupled system the syn-
chronized state with different amplitude is observed. In
Fig. 6 the oscillators ® and @ (® and @) also have dif-
ferent amplitude, but the @ and ® (@® and @) are syn-
chronized at anti-phase (waveform of (2) times —1 equals
that of ®). By decreasing the value of d, symmetry-
breaking bifurcation occur again, and only oscillator @
is stopped and the others seem to have similar ampli-
tude (see Fig. 7). The solutions of Figs. 5 and 7 meet
the Neimark-Sacker bifurcation, because in the neigh-
borhood there exists the Hopf-Hopf codimension-two bi-
furcation. .

We show an interesting oscillatory mode in Fig. 8.
Two oscillators (O and ®) are synchronized at anti-
phase and the other two (@ and @) are non-oscillatory.
By changing the values of coupling coefficient this so-
lution becomes a pair of almost in-phase and a pair of
almost anti-phase (see Fig. 9).

4. Concluding Remarks

We have investigated the oscillatory modes generated by
the Hopf bifurcations of non-origin equilibrium points in
the system of coupled four MBVP oscillators. The Hopf
bifurcations of the equilibrium points and the generated
oscillatory modes are classified. Moreover, by numeri-
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Table 1. Classification of oscillatory modes.

Y, “_Hopf ! Type 1 J[ Hopf [ Type 2
Yo I 1ho a pair of in-phase ahg a pair of in-phase
Y; 1hy | a pair of anti-phase || sh; | an independent pair of anti-phase
Yo il 1hs a pair of in-phase 2ho a pair of anti-phase
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Figure 3. Periodic solution generated by ;hs observed
in Eq. (1) with d, = 0.0028 and d, = —0.01.
Circled numbers indicate k in Eq. (1).
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Figure 4. Periodic solution generated by 2hs. d, = 0.01.
dy = 0.0004.

cal bifurcation analysis we observed various interesting
synchronized states caused by symmetry-breaking bifur-
cations.

Considering the associative memory model for storing
patterns as oscillatory states [13], this system has the

Figure 5. Periodic solution generated by the pitchfork
bifurcation of Fig. 3. d, = 0.0024. d,
-0.01.
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Figure 6. Periodic solution generated by the pitchfork
bifurcation of Fig. 4. dg = 0.01. dy = 0.000‘3.

advantage of many oscillatory modes.
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Figure 7. Periodic solution generated by the pitchfork
bifurcation of Fig. 6. d, = 0.005. dp =
0.0003.
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Figure 8. Waveforms of oscillatory modes. with d, =
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