An Efficient Semaphore Implementation Scheme for an Event

Bong-sik Sihn', Ki-Hee Han® and Jong-Wha Chong?
' Department of Electronic Engineering, Han-Yang University
17 Haengdang-Dong, Sungdong-Gu, Seoul 133-070, Korea
Tel. +82-2-2290-0558, Fax.: +82-2-2290-1886
? Department of Information & Communication, Han-Yang University
17 Haengdang-Dong, Sungdong-Gu, Seoul 133-070, Korea
e-mail : sbs69@korea.com, hanq73@empal.com

Abstract: In this paper, we present a novel efficient
semaphore implementation scheme which diminishes
completion time of high priority tasks and improves
reliability of a system. The real-time system is constrained
to complete their tasks in time. Especially, the task of a
hard real-time system must meet its deadline under
unfavorable conditions. In this paper, the number and sort
of the locked semaphores, when an event occurred, decide
whether the context switch should occur or not, so higher
priority tasks diminish in their completion time. The
experimental results show that the proposed method gives
performance improvements in finish time of high priority
tasks of about 11% over the Zuberi.

1. Introduction
Real-time system has time constraint such as deadline,
release time, period, etc. Especially, Hard real-time system
must complete a task within its deadline.[1] Real-time
systems today are much smaller and simpler systems such
as in automatic control, cellular phones, and home
electronics(camcorders, TVs, and VCRs).

When tasks are willing to share resources, semaphore is
implemented mutually exclusively to synchronize relative
tasks.[21[3]{4][51{6]]7] Because semaphore system calls are
invoked every time an task releases or resumes out of
waiting stage, it becomes essential that the Real-Time OS
provide efficient, low-overhead semaphores.

Most researches in the area of reducing the semaphore
overheads have inefficient characteristics in time schedules.
Semaphore implementations of Zuberi[4] result in priority
inversion. Then, a higher priority tasks wait for lower
priority task’s releasing the semaphore.

In this paper we device a mechanism to reduce the
completion time of the higher priority of tasks. We apply
this time reduction technique when an event occurs.

2. Conventional Semaphore Schemes

If the semaphore happens to be already locked by some
other task, the task making the semaphore lock system call
is put on a wait queue and is blocked. It is unblocked due to
the semaphore release operation and it then proceeds to
reserve the semaphore for itself.

If the caller is blocked by a semaphore, priority
inheritance takes place under which the current lock holder

task's priority is increased to that of the caller task. This is

needed to avoid unbounded priority inversion.
Zuberi[4) proposed an efficient scheme of semaphore
implementation for small-Memory embedded systems

which saves one context switch per semaphore lock
operation in most circumstances.

T,:(..P(81)..V(81)...) w7 :Release
T, (..P(S1)..V(81)..) : Critical section guarded by S1

Lock S1 Unlock S1
Y
T i
! [
Lock S1 Unlock S1
L
0 5 10 TIME

Figure 1. Zuberi’s semaphore scheme(1)

Zuberi's scheme is as follows(Figure 1): at first, T3 is
released; T3 acquires semaphore S1; when T1 with code
which intends to lock semaphore S1 is released, the OS
checks if S1 is nessary for T1 or not; If S1 is necessary,
then T3 keeps executing instead of context switch to Tl;
context switch to T1 is made after unlocking S1. As a result,
on context switch is eliminated.

First of all, notice that if T1 attempt to lock only Sl
semaphore, then the semaphore lock scheme is efficient due
to one less context switch. In fact, for this case, the
completion time is not delayed.

. W : Release
$(.P(81).. VIS1)...P(S2). V(S2)...) - Critical section guarded by S1
(.P(82)..¥(82)...) @R  Critical section guarded by S2

™

T,
Ts

T,
Lock 81 Unlock S1 Lock $2 Unlock S2

I,

Lock 82  Check Unlock 82

Wait for event

10 5 Tve

Event
Figure 2. Zuberi’s semaphore scheme(2)

The situation is very different when T1 is willing to
lock two or more semaphore including S1. Figure 2 shows a
typical scenario for this situation. T2 is released; T2
acquires semaphore S1; T2 blocks to wait for an event such
as a message arrival, some other tasks execute; T is

ITC-CSCC 2002



released; when T1 attempts to lock S1, T1 is blocked, and
T3 is executed; T3 acquires semaphore S2; when the event
waited for by T2 arrives, the OS checks if S2 is necessary
for T2 or not; As S2 is necessary, T3 keeps executing
instead of context switch to T2; context switch to T2 is
made after unlocking S2: when S2 is unlocked, TI is
executed; As a result, T1 is completed later than traditional
semaphore scheme.

3. Proposed Semaphore Scheme
We observe that zuberi's scheme is responsible for late
completion time of higher priority tasks. So, we propose a
novel semaphore implementation scheme which reduce
completion time of higher priority tasks rather than Zuberi's
scheme.

T, (P(S1)..V(S81)...) W Release
T,.{ P{81)..V(81)...P(82)..V(82)...) : Critical section guarded by $1
T, (.P(S2) V(82)..) g : Critical section guarded by 52

Attempttolock S1 Lock 81 Unjock S1
; %

Lock St Unlock S1

Z

‘ Check
Wail for event Lock ?2 7/
/

v

Lock 82 Unlock S2

Unlock 2

Evlent
Figure 3. Proposed semaphore scheme

the proposed scheme is as follows(Figure 3): T2 is
released; T2 acquires semaphore S1; T2 blocks to wait for
an event such as a message arrival; some other tasks
execute; T1 is released; when T1I attempts to lock S1, T1 is
blocked, and T3 is executed; T3 acquires semaphore S2;
when the event waited for by T2 arrives, the OS checks
some cases as depicted in Figure 4; only if S2 is necessary
for T2 and the number of semaphores necessary for T2 is
only one, T3 keeps executing instead of context switch to
T2: Otherwise, context switch is made right here to T2; So,
it S2 is necessary for T2 and any other semaphore is not
necessary for T2, Tl is completed relatively earlier than
Zuberi's method.

Event ¢

S2 included ?

Yes ‘

No
No. ofsem. » 1 ———————p

continue

Yes ‘

~Context
“switch

Figure 4. Flow chart of proposed scheme

4. Experimental Results
To measure the improvements in performance resulting
from our new semaphore implementation scheme, we
simulate it under SUN SPARC60. The time interval
between each task block is pseudo random.

0895
0894 §
0833
0892
0891
089
0889
0888
0887
0886
0885
0884

Proposed/
Conventional

No. of iteration

Figure 5. Experimental results

The experimental results in the Figure 5 show that the
proposed method gives performance improvements in
completion time of high priority tasks of about 11 % over
Zuberi's scheme.

5. Conclusions and Future Works
In this paper, we presented a new efficient semaphore
implementation scheme which reduces completion time of
high priority tasks by about 11% and improves reliability of
a system.

Future works include the advantages and disadvantages
of extending our scheme to multi-processors. In the future,
we plan to investigate adopting the proposed scheme to
multi-processor systems.

References

[1] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard real-time environment,”
Journal of the ACM, vol. 20, no. 1, pp. 46-61, 1973

[2] L. Sha, R. Rajkumar and J. Lehoczky, “Priority
inheritance protocols an approach to real-time
synchronization,” [EEE Trans. on Computer, vol. 39,
no.3, pp.1175-1198, 1990

{31 J. B. Goodenough and L. Sha, “The priority ceiling
protocol : A method for minimizing the blocking of high
priority Ada tasks,” in Proc. 2 nd ACM Int. Workshop
Real-Time Ada Issues, 1988

[4] K. M. Zuberi and K. G. Shin, “An efficient semaphore
implementation scheme for small-memory embedded
systems,” I[EEE Trans. on Computer, pp.25-34, 1997

[5] C. D. Wang, H. Takada and K. Sakamura, “Priority
inheritance spin locks for multiprocessor real-time
systems,” in 2 nd International Symposium on Parallel
Architectures, Algorithms, and Networks, pp. 70-76,
1996

[6] H. Takada and K. Sakamura, “Experimental implemen-
tations of priority inheritance semaphore on ITRON-
specification kernel,” in 7/th TRON Project International
Symposium, pp. 106-113, 1994

ITC-CSCC 2002



[7]1 A. Terrasa, A. Garcia-Fornes, “Real-Time Synchroni-
zation between Hard and Soft Tasks in RT-Linux,” /EEE
Trans. On Real-time Computing Systems and Applica-
tions, pp. 303-310, 1999

ITC-CSCC 2002



