An Integrated Toolset for Distributed Real-Time Systems Based on
Computational Grid

Lichen Zhang

Faculty of Computer Science and Technology
Guangdong University of Technology , 510090 Guangzhou
GuangDong Province, P.R. of China

Email: Ichzhang@gdut.edu.cn

Abstract: Advances in networking infrastructure have led
to the development of a new type of “computational grid”
infrastructure that provides predictable, consistent and
uniform access to geographically distributed resources
such as computers, data repositories, scientific instruments,
and advanced display devices . Such Grid environments are
being used to construct sophisticated,
performance-sensitive applications in such areas as
dynamic, distributed real-time applications. In this paper,
we propose a toolset for designing distributed real-time
systems based on computational grid.The toolset is based
on a new methodology and integrates the models that
methodology proposed for designing real-time systems.

1. Introduction

As the associated human community, instruments, and
resources required for data processing become increasingly
distributed, real-time online instrument systems connected
by wide area networks will be the norm for scientific,
medical, and similar data-generating systems. Such
systems have rigorous Quality of Service (QoS) objectives.
They must behave in a dependable manner, must respond
to threats in a timely fashion and must provide continuous
availability, even within hazardous and unknown
environments. Furthermore, resources should be utilized in
an efficient manner, and scalability must be provided to
address the ever-increasing complexity of scenarios that
confront such systems. The difficulties in engineering such
systems arise from several phenomena, one of the most
perplexing being the dynamic environments in which they
must function. Systems which operate in dynamic
environments may have unknown worst-case scenarios,
may have large variances in the sizes of the data and event
sets that they process (and thus, have large variances in
execution latencies and resource requirements), and cannot
be characterized (accurately) by constants, by intervals or
even by time-invariant statistical distributions. This
environment gives rise to the need for a variety of
capabilities: dynamically schedulable resources, easily
administered and enforced use conditions and access
control for all elements, systems designed to adapt to
varying conditions in the distributed environment,
automated control and guidance systems that facilitate
remote (in time, space and scale) operations, and a myriad
of reservation and scheduling capabilities for ail of the
resources involved.

Advances in networking infrastructure have led to the
development of a new type of “computational grid”
infrastructure that provides predictable, consistent and

uniform access to geographically distributed resources
such as computers, data repositories, scientific instruments,
and advanced display devices . Such Grid environments are
being used to construct sophisticated,
performance-sensitive applications in such areas as
dynamic, distributed real-time applications.

It seems fair to say those current methods and tools
that aid in the development of complex real-time systems
are still underdeveloped. Numerous methods and tools
have been proposed for the design of such systems.
However, with the current state of practice, none of these
methods and tools correctly addresses all kinds of user
requirements. Although designers typically commit to one
method, they often find that its notation is not rich enough
to express some semantic concepts or that it lacks the
guidance needed to choose design entities. Consequently,
they attempt to borrow useful ideas and notations from
other methods.

The objective of our work is to propose an integration
toolset, which supports a single design methodology that
covers all phases of the life cycle, ensuring that specific
real-time requirements of the software will be met, even on
Computational Grid as target. A key issue in current
distributed real-time system development is the desire to
integrate various analysis and design methods and tools
that address different aspects of development process.
Typically, different authors, each of whom has chosen to
focus on a specific part of the overall problem, produce
these methods and tools. Users of these methods and tools
want them to work together and fully support the user’s
design and development process. Thus, method and tool
integration is intended to provide an approach that
support the entire software development life cycle.

This paper is organized as follows. In section 2 we
outline the main aspects and characteristics of our
methodology supported by the integration toolset. In
section 3, we describe the main aspects and characteristics
of the integration toolset. In section 4, we summarize the
features of our integration tools and discuss current,
ongoing work.

2. Methodology Supported by Integration

Toolset
The primary goal of a software development
methodology is to facilitate the creation, communication,
verification and tracing of requirements, design, and
implementation. To be truly effective, a modern
methodology ~ must also automatically produce
implementations from designs, test cases from requirement

ITC-CSCC 2002

specifications, analyses of designs and reusable component
libraries. Our experience in the development of real-time
systems and research into software development
methodologies have led us to conclude that existing
public-domain methodologies do not permit us to achieve
these goals. Most often software development methods
offer excellent solutions to specific, partial aspects of
system development, providing only little of help for other
aspects. Classical methods for specifying and analyzing
real-time systems typically focus on a limited subset of
system characteristics. RTSA [18], for example, focuses
primarily on the functionality and state-oriented behavior
of real-time systems. STATEMATE [9] provides tree
different graphic or diagrammatic languages. Module
charts represent the structural view of the system, activity
charts represent functionality, and state charts represent the
behavior view of the system. At the other extreme, formal
specification and verification methods strive for fool-proof
or error-free designs. they can be used to specifying and
analyzing some properties of a system. Thus integration
between informal specification methods and formal
specification methods is desired:

® the integration of the methods used to specify systems

requirements.
® the integration of tools that support these methods and
® the integration of the multiple specification fragments
produced by applying these methods and tools.

In our opinion, an acceptable real-time system design
methodology must synthesize the different views of
systems, use a number of different methods and tools,
consist of an orderly series of steps to assure that all
aspects of the requirement and all the design aspects have
been considered. The real-time system design methodology
should address these problems:

® supporting specification and analysis of a system
from multiple viewpoints to capture different
perspectives on a system,

® providing methods and tools that are appropriate for
different viewpoints for improved understandability
of specifications,

® employing a formal basis to integrate multiple
viewpoints and perform analyses with mathematical
rigor, and

® providing methods to handle the size and complexity
required by large-scale systems.

Hence, the most obvious difference between current
methodologies and our approach is that we apply a
methodology which explicitly avoid the use of a simple
framework to design complex systems. Instead, we
advocate a multi-view objects-oriented approach to the
development of real-time systems, based on the
identification of complementary views on the system as
starting point for modeling and design. These five views
are: environmental view, the functional view, the
behavioral view, the performance view, the implementation
view. Each of these views will be discussed in detail below.

The environmental view: The environment in which a
real-time system is to operate plays an important role in the
design of the system. Embedded computer systems have to
react quickly and correctly complex sequence of external

events. The entities that produce these external events are
collectively named “environment”. Many environments are
very well defined. Designers think of these as deterministic
environments. These give rise to small, static real-time
system. However, some environments are dynamic and
nondeterministic environment. These give rise to large,
complex and dynamic real-time systems. Since the
behavior of the system is strongly coupled to the behavior
of the environment in this application domain, we
propose a view of environment as part of the development
of the system. In building this view, we are concerned with:

the identification of objects in the environment of system;

the determination of operations and events related to these
objects;

the description of the behavior of each object;

the collection of information from each object and
presentation of information within each object;

the specification of the timing constraints of the output of
each object;

the knowledge representation of environments
basis of specifying requirements.

The functional view: The functional view captures the
static structure of the system, it addresses questions on
functionality of the system, i.e. the input and output, what
the subfunctions are, and how these functions are
combined. This view is necessary because the objective to
construct a system lies in the realization of functionality
that an user demands.

The behavioral view: The behavioral view captures the
dynamics of the system, i.e., the conditions under which
the functionality is performed. The changes of internal
behavior of system are caused by the change of the
behavior of external environment. Some forms of state
machine was useful in analyzing the system behavior.
however, this type of analysis is limited since the number
of states required for an embedded computer system is too
large, it is desirable to use high-level automata in which
multiple states can be active at any moment of time,
multiple transitions can be fire simultaneously, states can
be decomposed hierarchically into lower-level machines,
and there exists a rich language for representing logical and
temporal dependencies among states and transitions.

The performance view: Performance is an important
but often neglected aspect of software development
methodologies. Performance refers to system
responsiveness: the time required to respond to specific
events, or to the number of the events processed in a given
time internal. Other than for e.g. information systems, and
even for soft realtimes, in hard real-time systems,
performance issues are correctness issues. In real-time
systems, performance requirements are a major concermn.
Due to the time criticalness of such an application,
performance analysis and optimization becomes prominent.
Hence, we need a performance view, in which the
performance of the artifacts under construction is critically
inspected, and where the performance of the resulting
system is kept under control within the development
process.

The implementation view: Real-time embedded systems
are often constrained by the target environment, they are

is as

ITC-CSCC 2002

supposed to be implemented on. The implementation view
aims at supporting the process of fitting the specification
onto a particular target hardware environment. A developer
must realize what hardware is used and how it is used to
implement the specification. Therefore, the hardware view
aims at providing means for evaluating particular
configurations with respect to a particular application. The
view can be represented by a pictorial representation of the
system showing how the hardware is configured and how
the tasks are implemented.

3. Main Aspects and Characteristics of

Integrated Toolset

The underlying premise of the integrated toolset is to
use the objects-oriented techniques to specify and analyze
the real-time systems under development from five
separate, but related, point of view: environment, function,
behavior, performance, implementation. For these five
views, the integrated working environment provides
different graphical, diagrammatic languages. These
graphical languages are based on a common set of simple
graphical editors that check for syntactic validity as the
specifications are developed, and more importantly, with
formal semantics that are embedded. Especially,
UML-RT[4], performance analysis tools and RT-CORBA][3]
can be integrated together for designing distributed
real-time systems based on computational grid.

UML-RT is an extension of the UML built on
concepts from ROOM. It provides different models for
specify real-time systems from different points of view. For
the external environment of real-time system, this is
expressed as an external event context in UML-RT. The
external event context is expressed as an object model in
which the system itself is treated as a single black-box
composite object sending and receiving messages to
external actor objects. The functionality of the systems is
expressed as the Use Case model. The Use case and
scenario models decompose the primary functionality of
the system and the protocols necessary to meet these
functional requirements. From the point of view of
behavior modeling each capsule is associated to a
statechart specifying states and states transition of the
capsule. A capsule is a specialized active class and is used
for modeling a self-contained component of a system.
Capsule statecharts are the same as statecharts of UML
which originated from Harel’s statecharts.

In order to handle dynamic environments, it is necessary
to make the some extensions for UML-RT to includes
feactures that can be related to dynamic mechanisms.
L.Welch [1] proposed the techniques for specification and
modeling of dynamic, distributed real-time systems. The
techniques are based on a
programming-language-independent meta-language for
describing real-time QoS in terms of end-to-end paths
through application programs. Constructs are provided for
the specification and modeling of deterministic, stochastic,
and dynamic characteristics of environment-dependent
paths. The provision for description of periodic, transient
and hybrid paths is also made. Another nover feature of the
language is that it allows the description of multi-level

timing constraints throught (1) simple, cycle deadlines, and
(2) super-period deadlines.

In the integrated too set, the most important aspects
are the tools of performance analysis, used to support the
analysis of temporal behavior of systems for completeness,
correctness, feasibility and predictability. A significant
difference between real-time systems and other software
systems is the importance of correct timing behavior.
Therefore, being able to guarantee meeting of timing
constraints is central to any real-time system development
method and tool. We use an integration approach that unify
and augment the diverse approaches of the timing analysis.
Different tools can be used for different stages and
different aspects. We prefer to a layer-by -layer timing
analysis in which we can achieve both microscopic and
macroscopic predictability. In the microscopic view, we
can compute the worst case execution time of any object.
This is not as simple as it first may see. First, we require a
simplified architecture so that instruction times are
well-defined. Second, we must be able to account for
resource requirements and calls to system primitives made
on behalf of this. This can be accomplished via various
techniques. Further, the layer-by-layer approach enables a
macroscopic view of predictability. That is, first, we
require the macroscopic view that all critical objects will
always make their deadlines. Second, by planning and
through microscopic predictability, at any point in time we
know exactly which noncritical but hard real-time objects
in the entire system will make their deadlines. Third, it is
also possible to develop an overall quantitative, but
probabilistic assessment of the performance of noncritical
hard real-time objects given expected normal and
overloads. We then would need to show that on the average
these objects meet the system requirements or redesign or
add resources until this is true.

A primary goal of using software component concepts
is to promotes software reuse and sharing. A software
component is an unit (object) of deployment for a
collection of related software, typically with some coherent
purpose. The software component is usually designed to be
used to compose some larger application. With the recent
adoption of the CORBA Component Model
(CCM)application designers now have a standard way to
implement, manage, configure, and deploy components
that implement and integrate CORBA services. CCM
standard not only enables greater software reuse for servers,
it also provides greater flexibility for dynamic
configuration of CORBA application. Thus, CCM
appears to be well —suited for real-time applications based
on the Computing Grid.

Meeting the QoS requirements of distributed real-time
applications requires an integrated architecture that can
deliver end-end QoS support at multiple levels in real-time
and embedded systems. Distributed object computing
(DOC) middleware based on the real-time CORBA
(RT_CORBA) offers solutions to some resource
management challenges and developers of real-time
systems, particularly those systems are designed using
dynamic scheduling techniques. Real-time CORBA ORBs
preserve efficient, scalable, and predictable behavior

ITC-CSCC 2002

end-to-end for higher-level services and application
components. For example, a global scheduling service can
be used to manage and schedule distributed resources.
Such a scheduling service can interact with an ORB to
provide mechanisms that support the specification and
enforcement of end-end operation timing behavior.

4. Conclusion

In this paper, we have introduced a methodology and
integrated toolset for analyzing, designing and
implementing real-time systems based on the grid
computing. an object oriented integration tool for the
development of real-time systems. This integrated toolset
is a collection of CASE tools, which enable a user to use
objects-oriented techniques to specify , analyze, design
system under development from five interrelated points of
views, capturing environment, functionality, behavior,
performance and implementation. One of the main feature
of the our integrated tool is its capability of providing
intricate of a set of tools of performance analysis, used to
support the analysis of temporal behavior of systems for
completeness, correctness, feasibility and predictability.

A number of possible desirable features are not
currently implemented. These include some test tools.
We expect an approach that combines software engineering
principles, increased attention to the user interface, and
prototyping in the manner described above to provide a
solid foundation for building production-quality, real-time
CASE tools. The existence of well-engineered CASE tools
should in turn encourage practitioners to use formal
methods in the development of real-time systems. We
believe the visual formalisms will turn out to be a crucial
ingredient in the continuous search for more natural and
powerful ways to develop distributed real-time systems. It
is our feeling the progress made in Virtual Reality will
result in a significant change in the way we carry out our
complex real-time system engineering activities.

Acknowledgments

This work is partly supported by the National Natural Science
Fund, Natural science Fund of Guangdong province, “Thousand ,
Hundred, and ten” outstanding person fund of Education
Department of Guangdong Province, Natural science fund of
Education Department of Guangdong Province.

References

[11 LR.Welch et al., Specification and modeling of
dynamic, distributed real-time systems, Proceedings of the
19" IEEE Real-Time Systems Symposium, 72-81, IEEE
Computer Society Press, 1998.

[2] C.Puchol and A.K.Mok, Integrated design tools for
hard real-time systems, Proceedings of the 19™ IEEE
Real-Time Systems Symposium, 72-81, IEEE Computer
Society Press, 1998.

[3] D.C.Schmidt et al., The design and performance of
real-time object request brokers, Computer
Communication, Vol.21, pp.294-324, Apr.1998.

[4] B.Selic, Using UML for modeling complex real-time
systems. Lecture Notes in Computer Science,

1474:250-262, 1998.

[5] R.Ammar and C.Rosiene, Visualizing a Hierarchy of
performance models for software systems,
Software-Practice and experience, Vol. 23(3), March 1993.
[6] N.C. Audsley, et al., STRESS, A simulator for hard
real-time systems, Software-Practice and experience, Vol.
24(6), June 1994.

[7] B.Berthomieu and M.Diaz, Modeling and verification
of time dependent systems using time Ptri Nets, IEEE
Trans. on Software Eng., Volume 17, Number 3, March
1991.

[8] Gene Forte et al., Computer-aided software engineering,
IEEE Computer Society Press, 1992.

[9] D.Harel et al., Statement: A working environment for
the development of complex reactive systems, IEEE Trans.
on Software Eng., Vol 16, Number 4, April 1990.

[10] C.Heitmeyer and D.Mandrioli, Formal methods for
real-time systems, Wiley, 1996

[11] Hood Working Group, HOOD Reference Manual,
draft B Issue 3.0, June 1989.

[12] J.P. Huang, “Modeling of software partition for
distributed real-time application”, IEEE Trans. on software
Eng., Vol SE 11, No. 10, 1985.

[13] RM. Kavi, “Real-time systems: Abstractions,
languages, and Design Methodologies”, IEEE Computer
Society Press, 1992,

[14] C.Y.Park and A.C. Shaw, Experiments with a program
timing tool based on source-level timing scheme, IEEE
computer, Vol.24, No.5, May 1991.

[15] J.A. Stankovic and K.Ramarithm, Hard real-time
systems, IEEE computer Society, Order Number8§19, 1988.
[16] S.P. Reiss, ‘PECAN: program development systems
that support multiple views’, IEEE Trans. on Software Eng.,
SE-11, (3), 1985.

[17] AM.V. Tilborg and C.M. Koob, Foundations of
real-time computing: Formal specifications and methods,
Kluwer Academic publishers, 1991.

[18] P.T. Ward, S.J.Mellor, Structured development for
real-time systems, Yourdon Computing series Yourdon
Press-Prentice-Hall 1985.

[19] JXu and D.L.Parnas, On statisfying timing
constraints in hard real-time systems, Proceeding of the
ACM SIGSOFT’91 Conference on Software for Critical
Systems, 1991.

[20] L.Zhang, et al., Methodology of real-time system
design using multiprocessors, Microprocessors and
Microsystems, Vol 17, No 4, May 1993.

[21 L.Zhang and B.Chaib, A design methodology for
real-time to be implemented on multiprocessors, the
Journal of system and sofiware, April, 1996, 33: 37-56.
[22] L. Zhang, et al., Integrating different views to develop
complex real-time systems, Proc of 2lst IFAC/IFIP
workshop on real-time programming, Elsevier Science ,
1996.

ITC-CSCC 2002

