Embedded System for Video Coding with
Logic-Enhanced DRAM and Configurable Processor

Toshiyuki KAYA!, Ryusuke MIYAMOTO', Takao ONOYE", and Isao SHIRAKAWA'

tDept. Information Systems Eng.
Osaka University
2-1 Yamada-Oka, Suita,
QOsaka, 565-0871 Japan

Abstract— A novel approach of embedded systems
for video coding is introduced with the main theme fo-
cused on logic-enhanced DRAM and configurable pro-
cessor. This approach is aiming at reducing high com-
putational costs and frequent memory accessing, which
embedded systems are suffering with in the execution of
video coding. According to the software execution anal-
ysis, large size functions with intensive memory accesses
are tuned to be executed by the logic-enhanced DRAM
while small size functions repeatedly called are to be
executed by dedicated instructions, which are newly in-
troduced in the configurable processor. The proposed
system can speed up H.263 video coding algorithm 7.4
times in comparison with the conventional embedded
processor based system.

1 Introduction

Video coding algorithms incur considerable amount
of computations, and hence generally dedicated hard-
wares have been used to execute these algorithms through
more than the past decade. With the recent progress of
semiconductor technology, high performance processors
are now capable of executing video coding in realtime.

On the other hand, low power consumption and low
hardware cost are indispensable to an embedded system
for mobile application. For such kind of systems, high
performance processors can not be employed, and hence
ASICs are mainly used to attain high cost performance.

-In both of these situations, efficient use of memory
accessing bus is of the most important issue in order to
process huge image frame. A number of approaches
to accelerate memory accessing speed has been pro-
posed. While RDRAM(1] by Rambus Inc. attempts to
attain high maximum transmission speed by access in-
terleaving technique, VC-SDRAM][2] does to raise av-
erage transmission speed by placing high speed large
register files called “virtual channel” between memory
cell and I/O interface.

_Also, as another approach to execute video processing
efficiently, functional memory architecture is proposed[3}.
This architecture equips functional unit on the inside
of memory cell and executes highly parallel computa-
tion with avoiding data transfer between processor and
memory. However, due to the difference of process tech-
nology for logics and memories, this architecture usu-
ally suffers from low integration efficiency and low ac-
cessing speed.

Motivated by this, the present paper proposes a novel
architecture of embedded systems dedicated to video
coding, which mainly consists of logic-enhanced DRAM

ttDept. Communications & Computer Eng.

Kyoto University
Yoshida-Honmachi, Sakyo-Ku,
Kyoto, 606-8501 Japan

and configurable processor. Referring to the software
execution analysis, large size functions with intensive
memory accesses are executed in the logic-enhanced
DRAM while small size functions ubiquitously appear
are executed with dedicated instructions, which are newly
introduced in the configurable processor. H.263[4] video
coding algorithm is used as a benchmark of performance
measurement. The proposed system executes the algo-
rithm 7.4 times as fast as the normal embedded proces-
sor based system.

2 System Architecture

2.1 Software Analysis

A number of hybrid video coding algorithms based on
motion compensation (MC) and discrete cosine trans-
form (DCT), such as H.263 and MPEG-4, requires in-
tensive computation, which causes system performance
degradation and high power consumption in the cases
being executed on the embedded processor-memory sys-
tem.

rl-
Lal
e

MB_Encode] Det
MB_Dec: idetrel
Deguant
CodeOncorTwo Predict_P DoPredChrom_P)|
FindPred
 ConatBitsCoc CodeCoc
MB _Recon_P,
InterPolatclmeg:
Clip
[codeoncinma Roconlmagd]

Figure 1: Caller-callee relation of H.263 algorithm.

First, we analyzed the number of cycles needed to
execute the H.263 video coding by using an embedded
processor and its instruction set simulator. Figure 1
and Table 1 show the caller-callee relation of the algo-
rithm and simulation results. According to the simula-
tion results, the ratio of sub-processes of H.263 coding
to total process of that were found to be 44.06% for
integer-pel motion estimation (ME), 23.70% for DCT

ITC-CSCC 2002

15.48% for inverse DCT (IDCT), 3.90% for quantiza-
tion, 2.70% for half-pel ME, and 10.16% for the other
sub-processes, respectively.

Table 1: Software analysis by instruction set simulator.

[Function Name #Cycles [#Called]
CodeOneOrTwo 1,157,878,407 10
MotionEstimatePicture| 579,777,572 10
MotionEstimation 538,315,074 990
SAD Macroblock 441,639,674 775,380
FindHalfPel 32,980,159 985
CodeOnelntra 63,809,604 1
MB_Encode 343,265,117 1,089
Dot 789,479,768 5,534
Quant 47,598,542 6,534
MB_Decode 199,517,965 796
idctref 189,114,447 4,776
Dequant 5,550,868 4,776
Predict P 22,692,378 985
DoPredChrom P 6,406,993 985
FindPred 9,156,728 985
CountBitsCoeff 22,841,658 796
CodeCoeff 22,274,554 2,205
MB_Recon_P 10,425,330 990
Interpolatelmage 9,052,086 10
Clip 5,641,019 1,089
ReconImage 13,625,044 1,089

3 Organization

Based on this simulation result, we have constructed
an embedded system providing an efficient video coding
performance. As is shown in Fig. 2, the system consists
of an embedded RISC processor with extended instruc-
tion set, a DRAM enhanced with a video-processing
unit (VPU) for the video coding, and memory interface
specialized to handle these modules. Details of these
module are described in the following sections.

Control

Memory Command VCDRAM
Address

W C—
Data

I Channel I
video Processing
Unit

Address
Ktensa Core

Data

Memory Bus

Processor Interface
{Memoxy Controllex)

Memory Interface

cach Controller

Data Cache] [Instruction)
[Cache

Figure 2: Overall block diagram of the embedded sys-
tem for video coding.

4 Acceleration by Configurable Proces-
sor

In this system, the Xtensa[5] configurable processor
core by Tensilica Inc. is employed, which is designed to
easily match specific application requirements; i.e. de-
signers can not only flexibly configure its base archi-
tecture, but also add new instructions to the original
instruction set by using Tensilica Instruction Extension
(TIE) language. To speed up quantization and half-pel
ME, which are repeatedly called small size functions,
we newly introduced 7 instructions (6 for quantization

and 1 for half-pel ME), which are illustrated in Figs. 3
and 4, respectively. The number of gates for additional
hardwares are 900.4 gates and 270.6 gates, respectively.

Opt

Ire ud omr salert sigon
e
N
g e
/A A
- cmr
. A==
=T\ H e
A Ovpus
omp
-t salectigaa
_I\...L__j
A
[h—J
oM
o ..__.S;)__
__{} — Y/

Figure 3: Additional instruction for quantization.

Figure 4: Additional instruction for half-pel ME.

5 Logic-enhanced DRAM Acceleration

Our logic-enhanced memory architecture, which ac-
celerates integer-pel ME, DCT, and IDCT, is based
on the virtual channel DRAM (VCDRAM) by Elpida
Memory Inc. The VCDRAM provides efficient data
throughput for multiple memory masters by accessing
through the virtual channels, which equips a set of 16
high-speed registers between memory cell array and 1/0
buffer.

Taking advantage of ability for multi-tasking access
to the channels, the newly introduced VPU can operate
in parallel with other memory accesses, as illustrated in
Fig. 5. Executive instructions of the VPU issued by the
processor are converted into some memory commands
in the memory interface and input through the com-
mand and address pins of VCDRAM, as is the case with
other conventional VCDRAM commands. Once an in-
struction is given, the VPU operates it with the data -
stored in the channels until it finishes without any other
commands. Therefore, intensive memory accessing to
load large amount of data to the processor are taken
away, and hence results in the reduction of the total
cost of the video coding. In addition to this, since the
processor can issue other load/store instructions even
though the VPU is running, the performance overhead
on the processor for the video coding by the VPU left
quite small.

The integer-pel ME block of the VPU estimates a
“reference macroblock” similar to the “current mac-
roblock”, which is now going to be encoded, from the

ITC-CSCC 2002

VCDRAM

Figure 5: VCDRAM with the video processing unit
(VPU).

previous frame, where each macroblock is with 16 x 16
pixels.

This ME block are mainly concerned with two pro-
cesses, namely, a calculation of a sum of absolute dif-
ferences (SAD) between the two macroblocks stored
in channels, and generation of a reference macroblock.
These two processes are executed in parallel so as to
attain high throughput. The size of memory channel
is compatible with that of a macroblock. Thus we use
totally 7 channels for ME, 4 channels for search area, 1
for current macroblock, and 2 for generation of a refer-
ence macroblock. Figures 6 and 7 illustrate organiza-
tion when executing ME and architecture of SAD func-
tional unit, respectively. Once a command is input from
the memory interface, the ME block conducts integer-
pel ME for a quarter of the search area, i.e. to complete
an ME process for one macroblock, 4 command inputs
are needed.

l Memory Cell Array l

" g 2 g
g o
:
e Moot O]

Figure 6: Motion estimation by logic-enhanced VC-
SDRAM.

{uamo)
FIONQOINUI 20238533

!

[SAD Unit

|
%
|

DCT incurs many of multiplications since it is gener-
ally based on a matrix calculation for pixel data. There-
fore the VPU carry out multiplications using a channel
as a table containing sub-products, based on so-called
distributed arithmetic. In this way, IDCT can be real-

dinput |
adder

4dinput
adder

[oo

e

Figure 7: SAD functional unit.

ized by replacing the contents of the table from those of
DCT, and thus as a result the quantity of the hardware
can be saved. It should be noticed here that a channel
can also be used as transposition memory between two
1-D DCT/IDCTs. Block diagram of the DCT unit is
depicted in Fig. 8.

Figure 8: DCT functional unit.

With these units, integer-pel ME for one macroblock
spends 15,376 cycles, and DCT/IDCT for one block (8
x 8 pixels) are conducted in 206 cycles. The VPU can
operate at 133MHz, and the ME block occupies 7,731
gates and the DCT/IDCT block does 6,545 gates by
0.18 um CMOS technology.

6 Memory I/F

The dedicated memory interface bridges the gap of
the interface between the Xtensa and logic-enhanced
VCDRAM, and provides non-blocked access from one to
another. The Xtensa communicates with external mod-
ules through 9-bit control and 32-bit memory address
signals all the time, thus instructions for the VPU must
be issued in the same way as conventional load/store
requests.

As its organization is illustrated in Fig. 9, the mem-
ory interface decodes the instruction and generates VC-
DRAM’s commands referring to the states of the mem-
ory and the VPU. During the execution of video cod-
ing instruction, the memory interface observes the VPU
constantly, and reports the completion of the computa-
tion to the processor through an interrupt signal. This
interface also manages the virtual channels, which play
a role of cache laid in the memory module. However,
some of them have to be locked not to be accessed,

ITC-CSCC 2002

when they are used by the VPU. Thus the memory in-
terface adopts a fully associative cache whose block can
be flexibly replaced.

Refresh
Contzoller

BINterrupt emwwd video
Processing
Unit Controller

I z_inat|
BRaqRdy | £ inet instruction
UL Command
Pvalid P o inst o
penel :é‘ |yt Address
Padre 3 addzess 3
PData & é [
flags "
Channel/Bank s
ch_nums :
]
E Imu"-.nq é
BDAtA ke .
Bvalid feple DBUS_out.
1 3
Bentl —b jyk— DBUS_in

Figure 9: Memory interface block diagram.

The throughput of the memory interface to handle
a processor request, i.e. the cycle count needed for ac-
cepting another one, depends on the request category
and the status of the VCDRAM.

A 32-bit write request needs [2 + channel miss latency]
cycles, and an n-bit read request needs [n/16 + 6 +
channel miss_latency] cycles, where n indicates the cache
line width of the Xtensa configured either of 128, 256,
or 512 bits. “channel.miss latency” is the cycle count
required for a channel miss transaction, which costs at
least 2 cycles and in the worst case 18 cycles.

As for video coding instructions, an integer-pel ME

instruction for 1 macroblock needs [110 + 8*restore latency

+ execute_time] cycles, a DCT or an IDCT for 1 block
does [29 + 4*restore latency + execute_time] cycles. In
these equations, “restore latency” indicates the time re-
quired for writing back the contents of the channel to
the memory cell if they have been changed, and equals
to 11 cycles. Although “execute_time” is the time that
the instruction is actually executed on the VPU, there
is no need to include it in the overhead on the mem-
ory interface since the interface can accept conventional
memory accesses for unlocked channel during this pe-
riod.

. As aresult overheads on the memory interface is sum-
marized in Table 2. This interface module can operate
at 133MHz, and the number of gates is 10,888 gates by
0.18 pm CMOS technology.

Table 2: Overhead on memory interface.

Instruction Best case | Worst case
(cycles) (cycles)

32-bit write 2 20

n-bit read n/16+6 | n/16+24

integer-pel ME 110 198

DCT or IDCT 29 73

7 Performance Evaluation

Table 3 shows required cycle counts for H.263 video
coding in the case of the proposed system and the con-

ventional system, where the numbers of cycles for en-
coding 11 frames are indicated. With the proposed sys-
tem, the cycle count required for integer-pel ME, DCT,
IDCT, quantization, and half-pel ME are reduced to
7.56%, 1.26%, 1.41%, 13.25% and 53.04%, respectively,
compared to the conventional system. Consequently,
the total computational load for the H.263 video cod-

. ing is reduced to 13.5%, which can be executed in an

embedded applications.

Table 3: Cycles counts for H.263 video coding.

Conventional | Proposed

(k cycles) | (k cycles)

ME 546,798 41,315
DCT 289,479 3,646
IDCT 189,114 2,665
Q 47,598 6,307
HalfPel 32,980 17,492
MC 31,744 31,744
VLC 22,841 22,841
1Q 5,551 5,551
others 29,691 29,691
Total 1,195,799 161,252

8 Conclusion

We have proposed a novel embedded system for video
coding by using logic-enhanced DRAM and configurable
processor. This approach is reducs high computational
costs and frequent memory accessing, which embedded
systems are suffering with in the execution of video cod-
ing. Based on the software execution analysis, large size
functions with intensive memory accesses are tuned to
be executed by the logic-enhanced DRAM while small
size functions repeatedly called are to be executed by
dedicated instructions, which are newly introduced in
the configurable processor. The proposed system can
successsfully accelerate H.263 video coding algorithm
7.4 times in comparison with the conventional embed-
ded processor based system.

References

[1] Rambus Inc.: http://www.rambus.com.

{2] Y. Yabe, N. Nakamura, Y. Aimoto, M. Moto-
mura, Y. Matsui, and Y. Asakura: “A next
generation channeled-DRAM architecture with di-
rect background-operation and delayed channel-
replacement techniques,” Symp. VLSI Circuits Di-
gest of Tech. Papers, 2000.

[3] K. Tamaru: “The trend of functional memory de-
velopment.” IEICE Trans. Electronics, vol. E76-C,
no. 11, pp. 1545-1554, 1993.

{4] ITU-T Rec. H.263: “Video coding for low bitrate
communication,” International Standard, 1998.

[5] Tensilica Inc.: http://www.tensilica.com.

ITC-CSCC 2002

